Due to its capacity to achieve nanometre-scale machining and lithography, a focused ion beam (FIB) is an extended tool for semiconductor device fabrication and development, in particular, for diamond-based devices. However, some technological steps are still not fully optimized for its use. Indeed, ion implantation seems to affect the crystalline structure and electrical properties of diamond. For this study, a boron-doped ([B] ∼ 10atoms·cm) diamond layer grown by chemical vapour deposition was irradiated using Gaby FIB, with 1 nA current and 5, 20, and 30 keV of acceleration voltage. The Gaimplanted diamond layer has been analysed through cathodoluminescence (CL) and scanning transmission electron microscopy (STEM)-related techniques. The beam penetration depth has been simulated by Monte Carlo calculations of both Ga(FIB) and e(CL) beams at different energies. The comparative CL analysis of the layer as-grown and after implantation revealed peaks related to defects, such as A band, H3 centre, and defects present in the green band region. The STEM studies for the 30 keV implanted sample showed that the diamond lattice is affected by the damage, evidencing amorphisation in the layer with a sp/spratio of 1.37, estimated by electron energy loss spectroscopy. Therefore, this study highlights the effects of the Gaimplantation on the optical and structural characteristics of diamond, using different methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ad6327 | DOI Listing |
X-ray crystallography is commonly used to determine crystal structures, whether continuous or ultrashort x rays are used. In this paper, it is shown that using only ultrashort pulses, it is possible to determine interplanar spacing in diamond layers, the distance between which can be only a few angstroms. The results obtained can be extended, with further development of the presented theory, to determine 3D objects in the crystal structure, the dimensions of which can be only a few angstroms.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea.
Atomic defects in solids offer a versatile basis to study and realize quantum phenomena and information science in various integrated systems. All-electrical pumping of single defects to create quantum light emission has been realized in several platforms including color centers in diamond and silicon carbide, which could lead to the circuit network of electrically triggered single-photon sources. However, a wide conduction channel which reduces the carrier injection per defect site has been a major obstacle.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Departamento QUIPRE, Universidad de Cantabria, Avda. Los Castros 46 39005 Santander, Spain; Grupo de Nanomedicina, IDIVAL, Avda. Cardenal Herrera Oria s/n, 39011 Santander, Spain. Electronic address:
High-charge micas exhibit improved adsorption properties and are a promising alternative clay material for the engineered barrier in deep geological repositories. When combined with Eu cations, they serve as an in situ luminescent probe for tracking the physical-chemical changes occurring in this engineered barrier over the long term. Therefore, a better understanding of the local environment of the lanthanide is highly desirable to comprehend the specific behavior of these systems.
View Article and Find Full Text PDFACS Nano
January 2025
School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia.
Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong 999077, China.
Superconductivity in infinite-layer nickelates has stirred much research interest, to which questions regarding the nature of superconductivity remain elusive. A critical leap forward to address these intricate questions is through the growth of high-crystallinity infinite-layer nickelates, including the "parent" phase. Here, we report the synthesis of a high-quality thin-film nickelate, NdNiO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!