We propose a novel strategy for tailoring the structure of fluorescent molecules to achieve emission at the tail end of the NIR-II window. The favorable spectroscopic properties and low cytotoxicity of YNs make them powerful tools for bioimaging. Notably, YN-4 exhibits a brightness 2.5 times greater than YN-3, 6 times that of IR-783, and 5 times that of ICG. This enhanced brightness enabled high-resolution imaging of mouse thoracic and abdominal cavities, tumor vasculature, and real-time monitoring of gastrointestinal motility using YN-4. Furthermore, covalent grafting of glucose onto the YN-Glu scaffold significantly improved tumor-targeting capability and facilitated tracking of glucose metabolism. This work aims to extend the application of fluorescent molecule imaging beyond the NIR-IIa window.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.124798 | DOI Listing |
Anal Methods
January 2025
School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China.
A novel fluorescent probe DTP, based on fluorine-silicon complexation, extends emission to 590 nm and achieves a 5 minutes response time. It shows high selectivity and a 0.98 μM detection limit for fluoride ions, with successful bioimaging application in living cells.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Engineering, Hangzhou Normal University, Hangzhou 310018, China.
Bacterial denitrification is a main pathway for soil NO sinks, which is crucial for assessing and controlling NO emissions. Biobased polyhydroxyalkanoate (PHA) microplastic particles (MPs) degrade slowly in conventional environments, remaining inert for extended periods. However, the impacts of PHA microplastic aging on the bacterial NO sink capacity before degradation remain poorly understood.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tsinghua University, Chemistry, HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China, 100084, Beijing, CHINA.
Expanded heterohelicene composing of alternating linearly and angularly fused multi-resonance (MR) skeleton has garnered wide interest for their promising narrowband emission. Herein, a pair of sym- and asym-expanded heterohelicene isomers are firstly developed by merging boron/oxygen (B/O)-embedded MR triangulene and indolo[3,2,1-jk]carbazole units via one-shot synthesis. Owing to the fully resonating extended helical skeleton, the target heterohelicenes exhibit significantly narrowed spectra bandwidth while emission red-shifting, thus affording deep-blue narrowband emission with peak at around 460 nm, full-width-at-half-maximum (FWHM) of merely 18 nm and near-unity photoluminescence quantum yields.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
Antiretroviral therapy (ART) improves the quality of life for those living with the human immunodeficiency virus type one (HIV-1). However, poor compliance reduces ART effectiveness and leads to immune compromise, viral mutations, and disease co-morbidities. Here we develop a drug formulation in which a lipid-based nanoparticle (LBNP) carrying rilpivirine (RPV) is decorated with the C-C chemokine receptor type 5 (CCR5) targeting peptide.
View Article and Find Full Text PDFSci Rep
January 2025
School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China.
In this paper, a dual-parameter liquid level and refractive index (R.I.) sensor is fabricated using three pieces of bare polymer optical fibers (POFs), which can independently and simultaneously sense the liquid level and R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!