AI Article Synopsis

Article Abstract

Perfluorooctanoic acid (PFOA), a member of per- and polyfluoroalkyl substances (PFASs), has been widely used in manufacturing for decades. Currently, PFOA is strictly regulated, but due to its high stability and persistence, it is detected in both environmental as well as in human matrices. To elucidate mechanisms of PFOA toxicity in humans, we determined the genome-wide transcriptomic changes of peripheral blood mononuclear cells (PBMC) responding to PFOA exposure in a sex-stratified analysis. This work employed samples from 145 female and 143 male participants of the CELSPAC: YA study to characterize PFOA-associated transcripts in a broader context using computational analysis. PFOA-associated gene expression differed significantly between men and women, as only 2 % of mapped genes were expressed in both sexes. Disease-specific enrichment analysis revealed cancer and immune-related disease terms as those most enriched in male and female populations. Patterns of enriched terms within the gene set enrichment analysis indicated three main targets of PFOA toxicity: i) lipid metabolism for women; ii) cell cycle regulation for men; and iii) immune system response for both sexes. In summary, our genome-wide transcriptomics analysis described sex-specific differences in PFOA-associated gene expression and provided evidence about biological pathways underlying PFOA toxicity in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2024.108879DOI Listing

Publication Analysis

Top Keywords

gene expression
12
pfoa toxicity
12
pfoa exposure
8
men women
8
toxicity humans
8
pfoa-associated gene
8
enrichment analysis
8
pfoa
7
analysis
5
gene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!