Controlling the thickness and uniformity of biomaterial films is crucial for their application in various fields including sensing and bioelectronics. In this work, we investigated film assemblies of an engineered repeat protein─specifically, the consensus tetratricopeptide repeat (CTPR) protein ─a system with unique robustness and tunability. We propose the use of microreflectance spectroscopy and apparent color inspection for the quick assessment of the thickness and uniformity of protein-based biomaterial films deposited on oxidized silicon substrates. Initially, we characterized the thickness of large, uniform, spin-coated protein films and compared the values obtained from microreflectance spectroscopy with those obtained from other typical methods, such as ellipsometry and atomic force microscopy. The excellent agreement between the results obtained from the different techniques validates the effectiveness of microreflectance as a fast, noninvasive, and affordable technique for determining the thickness of biomaterial films. Subsequently, we applied microreflectance spectroscopy to determine the thickness of drop-casted CTPR-based films prepared from small protein solution volumes, which present a smaller surface area and are less uniform compared to spin-coated samples. Additionally, we demonstrate the utility of apparent color inspection as a tool for assessing film uniformity. Finally, based on these results, we provide a calibration of film thickness as a function of the protein length and concentration for both spin-coated and drop-casted films, serving as a guide for the preparation of CTPR films with a specific thickness. Our results demonstrate the remarkable reproducibility of the CTPR film assembly, enabling the simple preparation of biomaterial films with precise thickness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337159PMC
http://dx.doi.org/10.1021/acsabm.4c00803DOI Listing

Publication Analysis

Top Keywords

biomaterial films
16
microreflectance spectroscopy
12
thickness
9
films
9
protein-based biomaterial
8
thickness uniformity
8
apparent color
8
color inspection
8
biomaterial
5
thickness determination
4

Similar Publications

Recent advances in research on biomass-based food packaging film materials.

Compr Rev Food Sci Food Saf

January 2025

College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China.

Although traditional petroleum-based packaging materials pose environmental problems, biodegradable packaging materials have attracted extensive attention from research and industry for their environmentally friendly properties. Bio-based films, as an alternative to petroleum-based packaging films, demonstrate their significant advantages in terms of environmental friendliness and resource sustainability. This paper provides an insight into the development of biomass food packaging films such as cellulose, starch, chitosan, and gelatine, including their properties, methods of preparation (e.

View Article and Find Full Text PDF

Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties.

View Article and Find Full Text PDF

Surface State Control of Apatite Nanoparticles by pH Adjusters for Highly Biocompatible Coatings.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.

View Article and Find Full Text PDF

Photodynamic bactericidal nanomaterials in food packaging: From principle to application.

J Food Sci

January 2025

Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China.

Compared to traditional preservatives, photodynamic inactivation (PDI) offers a promising bactericidal approach due to its nontoxic nature and low propensity for microbial resistance. In this paper, we initially investigate the principles and antibacterial mechanisms underlying PDI. We then review factors influencing PDI's germicidal efficacy in food preservation.

View Article and Find Full Text PDF

Effective wound healing requires biocompatible and functional wound dressings. This study explores the synergistic potential of gellan gum (GG), known for its exceptional gel-forming abilities, and acacia stingless bee honey (SBH), for its potent antioxidant properties, in developing advanced wound care solutions. GG hydrogel films incorporated with varying concentrations of SBH (v/v) at 10 % (GGSBH10), 15 % (GGSBH15), and 20 % (GGSBH20) were characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!