Associations of Cerebral Blood Flow Patterns With Gray and White Matter Structure in Patients With Temporal Lobe Epilepsy.

Neurology

From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA.

Published: August 2024

Background And Objectives: Neuroimaging studies in patients with temporal lobe epilepsy (TLE) show widespread brain network alterations beyond the mesiotemporal lobe. Despite the critical role of the cerebrovascular system in maintaining whole-brain structure and function, changes in cerebral blood flow (CBF) remain incompletely understood in the disease. Here, we studied whole-brain perfusion and vascular network alterations in TLE and assessed its associations with gray and white matter compromises and various clinical variables.

Methods: We included individuals with and without pharmaco-resistant TLE who underwent multimodal 3T MRI, including arterial spin labelling, structural, and diffusion-weighted imaging. Using surface-based MRI mapping, we generated individualized cortico-subcortical profiles of perfusion, morphology, and microstructure. Linear models compared regional CBF in patients with controls and related alterations to morphological and microstructural metrics. We further probed interregional vascular networks in TLE, using graph theoretical CBF covariance analysis. The effects of disease duration were explored to better understand the progressive changes in perfusion. We assessed the utility of perfusion in separating patients with TLE from controls using supervised machine learning.

Results: Compared with control participants (n = 38; mean ± SD age 34.8 ± 9.3 years; 20 females), patients with TLE (n = 24; mean ± SD age 35.8 ± 10.6 years; 12 females) showed widespread CBF reductions predominantly in fronto-temporal regions (Cohen -0.69, 95% CI -1.21 to -0.16), consistent in a subgroup of patients who remained seizure-free after surgical resection of the seizure focus. Parallel structural profiling and network-based models showed that cerebral hypoperfusion may be partially constrained by gray and white matter changes (8.11% reduction in Cohen ) and topologically segregated from whole-brain perfusion networks (area under the curve -0.17, < 0.05). Negative effects of progressive disease duration further targeted regional CBF profiles in patients ( = -0.54, 95% CI -0.77 to -0.16). Perfusion-derived classifiers discriminated patients from controls with high accuracy (71% [70%-82%]). Findings were robust when controlling for several methodological confounds.

Discussion: Our multimodal findings provide insights into vascular contributions to TLE pathophysiology affecting and extending beyond mesiotemporal structures and highlight their clinical potential in epilepsy diagnosis. As our work was cross-sectional and based on a single site, it motivates future longitudinal studies to confirm progressive effects, ideally in a multicentric setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11314957PMC
http://dx.doi.org/10.1212/WNL.0000000000209528DOI Listing

Publication Analysis

Top Keywords

gray white
12
white matter
12
cerebral blood
8
blood flow
8
patients
8
patients temporal
8
temporal lobe
8
lobe epilepsy
8
network alterations
8
whole-brain perfusion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!