An all-solid-state single-frequency continuous-wave (CW) 355 nm ultraviolet (UV) laser based on a dispersion-compensated doubly resonant resonator is presented in this Letter that is achieved by employing homemade high-stability all-solid-state frequency-correlated dual-wavelength lasers at 1064 and 532 nm and a temperature-controlled type-I critical-phase-matching LiBO (LBO) to act as the fundamental laser source and the nonlinear medium, respectively. The frequency-correlated dual-wavelength single-frequency CW laser supplies the fundamental frequency 1064 and 532 nm lasers with good frequency synchronization. And the temperature-controlled LBO acts as the dispersion-compensation element to realize double resonance of the 1064 and 532 nm laser. Finally, a 4.2 W high-stability 355 nm UV laser is experimentally obtained, and the corresponding total conversion efficiency is up to 20.5%. To the best of our knowledge, this is the highest power reported about single-frequency CW 355 nm UV laser. The presented method can pave a way to develop a compact single-frequency 355 nm UV laser with high output power.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.529817 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!