The conventional design process for metasurfaces is time-consuming and computationally expensive. To address this challenge, we utilize a deep convolutional generative adversarial network (DCGAN) to generate new nanohole metastructure designs that match a desired transmittance spectrum in the visible range. The trained DCGAN model demonstrates an exceptional performance in generating diverse and manufacturable metastructure designs that closely resemble the target optical properties. The proposed method provides several advantages over existing approaches. These include its capability to generate new designs without prior knowledge or assumptions regarding the relationship between metastructure geometries and optical properties, its high efficiency, and its generalizability to other types of metamaterials. The successful fabrication and experimental characterization of the predicted metastructures further validate the accuracy and effectiveness of our proposed method.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.527384DOI Listing

Publication Analysis

Top Keywords

metastructure designs
8
optical properties
8
proposed method
8
specific wavelength
4
wavelength peak
4
peak emulation
4
emulation amorphous
4
amorphous metastructures
4
metastructures conventional
4
conventional design
4

Similar Publications

The ability to perform mathematical computations using metastructures is an emergent paradigm that carries the potential of wave-based analog computing to the realm of near-speed-of-light, low-loss, compact devices. We theoretically introduce and experimentally verify the concept of a reconfigurable metastructure that performs analog complex mathematical computations using electromagnetic waves. Reconfigurable, RF-based components endow our device with the ability to perform stationary and non-stationary iterative algorithms.

View Article and Find Full Text PDF

A compliant metastructure design with reconfigurability up to six degrees of freedom.

Nat Commun

January 2025

Morphing Matter Lab, Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA.

Compliant mechanisms with reconfigurable degrees of freedom are gaining attention in the development of kinesthetic haptic devices, robotic systems, and mechanical metamaterials. However, available devices exhibit limited programmability and form-customizability, restricting their versatility. To address this gap, we propose a metastructure concept featuring reconfigurable motional freedom and tunable stiffness, adaptable to various form factors and applications.

View Article and Find Full Text PDF

Inverse design with topology optimization considers a promising methodology for discovering new optimized photonic structure that enables to break the limitations of the forward or the traditional design especially for the meta-structure. This work presents a high efficiency mid infra-red imaging photonics element along mid infra-red wavelengths band starts from 2 to 5 µm based on silicon nitride optimized material structures. The first two designs are broadband focusing and reflective meta-lens under very high numerical aperture condition (NA = 0.

View Article and Find Full Text PDF

Deformation-Induced Electromagnetic Reconfigurable Square Ring Kirigami Metasurfaces.

Micromachines (Basel)

December 2024

Tianmushan Laboratory, Yuhang District, Hangzhou 311115, China.

The continuous expansion of wireless communication application scenarios demands the active tuning of electromagnetic (EM) metamaterials, which is essential for their flexible adaptation to complex EM environments. However, EM reconfigurable systems based on intricate designs and smart materials often exhibit limited flexibility and incur high manufacturing costs. Inspired by mechanical metastructures capable of switching between multistable configurations under repeated deformation, we propose a planar kirigami frequency selective surface (FSS) that enables mechanical control of its resonant frequency.

View Article and Find Full Text PDF

The complete manipulation of Jones matrix phase-channels using metasurfaces brings forth unparalleled possibilities across diverse wavefront modulation applications. Traditionally, achieving independent control over all four phase-channels usually involves the introduction of chirality with multilayer or three-dimensional metasurfaces. Here, we present a general chirality-free method that relies on polarization base transformation with a planar minimalist metasurface, effectively decoupling the four Jones matrix phase-channels, thereby unleashing the fundamental boundaries imposed by conventional linear or circular polarization bases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!