A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of innovative alkali activated paste reinforced with polyethylene fibers for concrete crack repair. | LitMetric

AI Article Synopsis

  • Concrete structures often crack, leading to issues with their integrity and durability, and traditional repair methods using ordinary Portland cement can cause further shrinkage cracks.
  • Alkali-activated binders (AAP) show potential as a better repair material, especially when combined with varying amounts of polyethylene (PE) fibers; AAP with 1.25% PE fibers demonstrated the best tensile and flexural strength.
  • Testing showed that AAPs significantly improve the compressive strength of repaired concrete, reducing initial strength loss and indicating that they could be a more effective and sustainable solution for concrete repair.

Article Abstract

Concrete structures are susceptible to cracking, which can compromise their integrity and durability. Repairing them with ordinary Portland cement (OPC) paste causes shrinkage cracks to appear in the repaired surface. Alkali-activated binders offer a promising solution for repairing such cracks. This study aims to develop an alkali-activated paste (AAP) and investigate its effectiveness in repairing concrete cracks. AAPs, featuring varying percentages (0.5%, 0.75%, 1%, 1.25%, 1.5%, and 1.75%) of polyethylene (PE) fibers, are found to exhibit characteristics such as strain hardening, multiple plane cracking in tension and flexure tests, and stress-strain softening in compression tests. AAP without PE fibers experienced catastrophic failure in tension and flexure, preventing the determination of its stress-strain relationship. Notably, AAPs with 1.25% PE fibers demonstrated the highest tensile and flexural strength, exceeding that of 0.5% PE fiber reinforced AAP by 100% in tension and 70% in flexure. While 1% PE fibers resulted in the highest compressive strength, surpassing AAP without fibers by 17%. To evaluate the repair performance of AAP, OPC cubes were cast with pre-formed cracks. These cracks were induced by placing steel plates during casting and were designed to be full and half-length with widths of 1.5 mm and 3 mm. AAP both with and without PE fibers led to a substantial improvement in compressive strength, reducing the initial strength loss of 30%-50% before repair to a diminished range of 2%-20% post-repair. The impact of PE fiber content on the compressive strength of repaired OPC cube is marginal, providing more flexibility in using AAP with any fiber percentage while still achieving effective concrete crack repair. Considering economic and environmental factors, along with observed mechanical enhancements, AAPs show promising potential for widespread use in concrete repair and related applications, contributing valuable insights to the field of sustainable construction materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249222PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305143PLOS

Publication Analysis

Top Keywords

aap fibers
12
compressive strength
12
polyethylene fibers
8
concrete crack
8
crack repair
8
tension flexure
8
fibers
7
aap
7
concrete
5
repair
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!