The newly synthesized chiral active [5]helicene-like tetrabenzofluorene (TBF) based highly red-emitting molecules exhibit flower-like self-assembly. These molecules display photophysical and structural properties such as intramolecular charge transfer, dual state emission, large fluorescence quantum yield, and solvatochromism. In TBFID, the indandione functional group attached on both sides as the terminal group offers an A-D-A push-pull effect and acts as a strong acceptor to cause more redshift in solution as well as in solid state as compared to TBFPA (TBF with benzaldehyde functional group in terminal position). The self-assembly studies of TBFID demonstrate the aggregation-induced emission enhancement (AIEE) attributed to the restriction of intramolecular rotation at the aggregated state. Furthermore, TBFID shows high quantum yield and intense red emission, making the molecule fit for organic light-emitting diodes (OLED) and bioimaging applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202400639 | DOI Listing |
ChemMedChem
January 2025
IIT Roorkee: Indian Institute of Technology Roorkee, Chemistry, Department of Chemistry, 247667, Roorkee, INDIA.
The development of small molecule-based drugs emerged as a cornerstone of modern drug discovery. Structural activity relationship (SAR) studies in medicinal chemistry are crucial for lead optimization, where a subtle change in the substituent can significantly alter its binding affinity with the biological target. Herein, a highly efficient single-atom substitution (SAS) approach has been developed, where sulfur for oxygen strategy is utilized as a powerful molecular editing technique to identify N-vinyl Indole-thiobarbituric acid (6a) as a novel small molecule-based scaffold with tunable photophysical and antiproliferative activities.
View Article and Find Full Text PDFChem Asian J
January 2025
Fujian Agriculture and Forestry University, College of Materials Engineering, No. 63, Xiyuangong Road, Minhou County, 350108, Fuzhou, CHINA.
Organic light-emitting diodes (OLEDs) has been attracting much extensive interest owing to their advantages of high-definition and flexible displays. Many advances have been focused on boosting the efficiency and stability. Two innovative dimethylacridine-based emitters,1,1,2,2-tetrakis(4- (2,7-di-tert-butyl-9,9-dimethylacridin-10(9H)-yl)phenyl ethene (AcTPE), and bis(4-(2,7-di-tert-butyl-9,9-dimethylacridin-10(9H)-yl)phenyl)methanone (Ac2BP) were designed and synthesized, in which TPE-baesed AcTPE presents AIE properties, and with the phenyl as spacer between the DMAC and carbony, aryl-ketone-based Ac2BP doesn't show AIE properties due to the absence of restriction of intramolecular rotations.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively.
View Article and Find Full Text PDFChemistry
January 2025
Nanjing University of Posts and Telecommunications, Institute of Advanced Materials (IAM), 9 Wenyuan Road, Nanjing 210023, China., Nanjing, CHINA.
Circularly polarized organic light-emitting diodes (CP-OLEDs) have significant promise for naked-eye 3D displays. However, most devices are fabricated using vacuum deposition technology, and development of efficient solution-processed CP-OLEDs, particularly those exhibiting low efficiency roll-off, remains a formidable challenge. This research successfully designed and synthesized two pairs of thermally activated delayed fluorescence (TADF) enantiomers through isomer engineering, namely (R/S)-N-5-TPA and (R/S)-N-4-TPA, which features fifth and fourth substitution sites of phthalimide (acceptor) by tri-phenylamine (donor), respectively.
View Article and Find Full Text PDFMolecules
December 2024
Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.
Phosphorescent sensors are essential for rapid visual sensing of volatile acids, due to their profound impact on ecosystems and human health. However, solid phosphorescent materials for acid-base stimulus response are still rare, and it is important to achieve real-time monitoring of volatile acids. In order to obtain an efficient and rapid response to volatile acid stimulation, N-H and -NH substituents are introduced into an auxiliary ligand to synthesize a new cationic Ir(III) complex ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!