Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein classification is a crucial field in bioinformatics. The development of a comprehensive tool that can perform feature evaluation, visualization, automated machine learning, and model interpretation would significantly advance research in protein classification. However, there is a significant gap in the literature regarding tools that integrate all these essential functionalities. This paper presents iProps, a novel Python-based software package, meticulously crafted to fulfill these multifaceted requirements. iProps is distinguished by its proficiency in feature extraction, evaluation, automated machine learning, and interpretation of classification models. Firstly, iProps fully leverages evolutionary information and amino acid reduction information to propose or extend several numerical protein features that are independent of sequence length, including SC-PSSM, ORDip, TRC, CTDC-E, CKSAAGP-E, and so forth; at the same time, it also implements the calculation of 17 other numerical features within the software. iProps also provides feature combination operations for the aforementioned features to generate more hybrid features, and has added data balancing sampling processing as well as built-in classifier settings, among other functionalities. Thus, It can discern the most effective protein class recognition feature from a multitude of candidates, utilizing three automated machine learning algorithms to identify the most optimal classifiers and parameter settings. Furthermore, iProps generates a detailed explanatory report that includes 23 informative graphs derived from three interpretable models. To assess the performance of iProps, a series of numerical experiments were conducted using two well-established datasets. The results demonstrated that our software achieved superior recognition performance in every case. Beyond its contributions to bioinformatics, iProps broadens its applicability by offering robust data analysis tools that are beneficial across various disciplines, capitalizing on its automated machine learning and model interpretation capabilities. As an open-source platform, iProps is readily accessible and features an intuitive user interface, ensuring ease of use for individuals, even those without a background in programming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2024.3425716 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!