Direct Spectroscopic Ferrochelatase Assay.

Methods Mol Biol

Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.

Published: July 2024

Ferrochelatases (E.C. 4.99.1.1) catalyze the insertion of ferrous iron into either protoporphyrin IX to make protoheme IX or coproporphyrin III to make coproheme III. Ferrochelatase activity in extracts or purified protein can be measured via several assays. Here, we describe a rapid real-time direct spectroscopic ferrochelatase assay for both protoporphyrin and coproporphyrin ferrochelatases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-4043-2_14DOI Listing

Publication Analysis

Top Keywords

direct spectroscopic
8
spectroscopic ferrochelatase
8
ferrochelatase assay
8
assay ferrochelatases
4
ferrochelatases 49911
4
49911 catalyze
4
catalyze insertion
4
insertion ferrous
4
ferrous iron
4
iron protoporphyrin
4

Similar Publications

Bilayer graphene ribbons (GRs) hold great promise for the fabrication of next-generation nanodevices, thanks to unparalleled electronic properties, especially the tunable bandgap in association with twist angle, ribbon width, edge structure, and interlayer coupling. A common challenge in manufacturing bilayer GRs via templated chemical vapor deposition (CVD) approach is uncontrollable dewetting of micro- and nano-scaled patterned metal substrates. Herein, a confined CVD synthetic strategy of bilayer GR arrays is proposed, by utilizing the bifunctional Ni as a buffered adhesion layer to regulate the anisotropic dewetting of metal film in the V-groove and as a carbon-dissolution regulated metal to initiate the bilayer nucleation.

View Article and Find Full Text PDF

In biological systems, heme-copper oxidase (HCO) enzymes play a crucial role in the oxygen reduction reaction (ORR), where the pivotal O-O bond cleavage of the (heme)Fe-peroxo-Cu intermediate is facilitated by active-site (peroxo core) hydrogen bonding followed by proton-coupled electron transfer (PCET) from a nearby (phenolic) tyrosine residue. A useful approach to comprehend the fundamental relationships among H-bonding/proton/H-atom donors and their abilities to induce O-O bond homolysis involves the investigation of synthetic, bioinspired model systems where the exogenous substrate properties (such as p and bond dissociation energy (BDE)) can be systematically altered. This report details the reactivity of a heme-peroxo-copper HCO model complex (LS-4DCHIm) toward a series of substituted catechol substrates that span a range of p and O-H bond BDE values, exhibiting different reaction mechanisms.

View Article and Find Full Text PDF

Growth of Clathrate Hydrates in Nanoscale Ice Films Observed Using Electron Diffraction and Infrared Spectroscopy.

J Phys Chem Lett

January 2025

DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.

Clathrate hydrates (CHs) are believed to exist in cold regions of space, such as comets and icy moons. While spectroscopic studies have explored their formation under similar laboratory conditions, direct structural characterization using diffraction techniques has remained elusive. We present the first electron diffraction study of tetrahydrofuran (THF) and 1,3-dioxolane (DIOX) CHs in the form of nanometer-thin ice films under an ultrahigh vacuum at cryogenic temperatures.

View Article and Find Full Text PDF

The growing energy demands have led to an increased attention towards the development of efficient energy storage devices. In this direction, aqueous rechargeable batteries have attracted considerable attention due to their affordability, environmental friendliness and quite importantly, safety. In the present studies, a two-dimensional copolymer of benzoquinone and pyrrole that is insoluble in aqueous solutions is explored as an electrode for aqueous, rechargeable divalent ion storage.

View Article and Find Full Text PDF

Isolation of Inner-Sphere Aquo Complexes of Samarium(II).

J Am Chem Soc

January 2025

Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States.

The and isomers of [Sm(dicyclohexano-18-crown-6)(HO)]I exhibiting water molecules bound to the Sm ion have been isolated and characterized. Sm possesses an electrochemical potential sufficient for water reduction, and thus these complexes add to the recent body of evidence that the oxidation of Sm by water can operate by a mechanism that is not straightforward. These complexes are obtained by the direct addition of stoichiometric amounts of water to solutions of the respective Sm(dicyclohexano-18-crown-6)I isomers under an inert atmosphere.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!