Sample Preparation for X-Ray Fluorescence Microscopy of Iron Distribution in Biological Specimen.

Methods Mol Biol

Department of Molecular and Medical Genetics, Oregon Health & Sciences University, Portland, OR, USA.

Published: July 2024

Characterizing the two- and three-dimensional distribution of trace metals in biological specimens is key to better understand their role in biological processes. Iron (Fe) is of particular interest in these trace metals due to its widespread role in maintaining cellular health and preventing disease. X-ray fluorescence microscopy (XFM) is emerging as the method of choice for investigators to interrogate the cellular and subcellular distribution of Fe. XFM utilizes the intrinsic X-ray fluorescence properties of each element to produce quantitative 2D and 3D distributions of trace metals within a sample. Herein, methods for sample preparation of cells and tissue for the determination of Fe distribution by XFM are described.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-4043-2_3DOI Listing

Publication Analysis

Top Keywords

x-ray fluorescence
12
trace metals
12
sample preparation
8
fluorescence microscopy
8
distribution xfm
8
preparation x-ray
4
microscopy iron
4
distribution
4
iron distribution
4
distribution biological
4

Similar Publications

, the etiological agent of Chagas disease, is a parasite known for its diverse genotypic variants, or Discrete Typing Units (DTUs), which have been associated with varying degrees of tissue involvement. However, aspects such as parasite attachment remain unclear. It has been suggested that the TcI genotype is associated with cardiac infection, the most common involved site in chronic human infection, while TcII is associated with digestive tract involvement.

View Article and Find Full Text PDF

ZnO/MO (M = Fe, Co, Ni, Sn, In, Ga; [M]/([Zn] + [M]) = 15 mol%) nanofiber heterostructures were obtained by co-electrospinning and characterized by X-ray diffraction, scanning electron microscopy and X-ray fluorescence spectroscopy. The sensor properties of ZnO and ZnO/MO nanofibers were studied toward reducing gases CO (20 ppm), methanol (20 ppm), acetone (20 ppm), and oxidizing gas NO (1 ppm) in dry air. It was demonstrated that the temperature of the maximum sensor response of ZnO/MO nanofibers toward reducing gases is primarily influenced by the binding energy of chemisorbed oxygen with the surface of the modifier's oxides.

View Article and Find Full Text PDF

The use of biomass feedstocks for producing high-value-added chemicals is gaining significant attention in the academic community. In this study, near-infrared carbon dots (NIR-CDs) with antimicrobial and bioimaging functions were prepared from branches and leaves using a novel green synthesis approach. The spectral properties of the synthesized NIR-CDs were characterized by ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy.

View Article and Find Full Text PDF

In recent years, the near-infrared (NIR) fluorescence theranostic system has garnered increasing attention for its advantages in the simultaneous diagnosis- and imaging-guided delivery of therapeutic drugs. However, challenges such as strong background fluorescence signals and rapid metabolism have hindered the achievement of sufficient contrast between tumors and surrounding tissues, limiting the system's applicability. This study aims to integrate the pegylation strategy with a tumor microenvironment-responsive approach.

View Article and Find Full Text PDF

This study evaluates the effectiveness of Total Reflection X-ray Fluorescence for multi-element analysis in mussels, focusing on sensitivity, precision, and detection limits. Additionally, it offers a cross-regional comparison of elemental composition in mussels from aquaculture farms in Italy, Spain, and Chile. TXRF, using suspensions of mussel samples, proved effective in detecting minor and trace elements, with recovery rates over 80% for Fe, Cu, Zn, As, and Sr.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!