Enhanced photocatalytic performance of Bi-doped TiO under sunlight and UV light: mechanistic insights and comparative analysis.

Photochem Photobiol Sci

Solar Energy Conversion and Nanomaterials Laboratory, Department of Chemistry, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India.

Published: August 2024

Bismuth-doped metal oxides exhibit favourable photocatalytic features when exposed to both sunlight and UV light. In this approach, Bi/TiO and Bi/TiO photocatalysts were prepared and their structural and optical properties are analysed using various characterization techniques. These developed photocatalysts were further tested for the photocatalytic elimination of Nitrobenzene in UV light and sunlight and compared with the performance of bare TiO. The catalyst Bi/TiO performed better in UV light with 72.31% degradation, and 4.74 × 10 mol.litre.min initial rate of reaction. However, when exposed to sunlight, Bi/TiO outperformed with 73.85% degradation, and 4.63 × 10 mol.min initial rate of reaction. This significant increase in photocatalytic activity of Bi/TiO under sunlight could be accredited to increased light harvesting and enhanced efficiency in charge carrier separation, both of which were made possible by bismuth-induced surface plasmon resonance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43630-024-00609-3DOI Listing

Publication Analysis

Top Keywords

sunlight light
8
exposed sunlight
8
initial rate
8
rate reaction
8
sunlight
5
light
5
bi/tio
5
enhanced photocatalytic
4
photocatalytic performance
4
performance bi-doped
4

Similar Publications

Senescent melanocytes have been suggested to play a role in the development of ageing-associated pigmentary changes and skin ageing. Here, we assessed the senolytic capacity of recognised senolytic chemicals and natural compounds in UV-irradiated senescent melanocytes. Among the tested agents, only ABT-737 and ABT-263 showed a significant reduction in the number of SA-β-Gal-positive senescent melanocytes and in the expressions of p16 and p21.

View Article and Find Full Text PDF

A polyacrylamide gel method has been used to synthesize a variety of polyvalent-transition-metal-doped Ni position of high entropy spinel oxides (NiZnMgCuCo)AlO-800 °C (A) on the basis of NiAlO, and the catalytic activity of A is studied under the synergistic action of peroxymonosulfate (PMS) activation and simulated sunlight. The A containing polyvalent transition metals (Ni, Cu, and Co) can effectively activate PMS and efficiently degrade levofloxacin (LEV) and tetracycline hydrochloride (TCH) under simulated sunlight irradiation. After 90 min of light exposure, the degradation percentages of LEV (50 mg L) and TCH (100 mg L) degrade by the A/PMS/vis system reach 87.

View Article and Find Full Text PDF

The unique structural properties of zeolites make them ideal environments for encapsulating subnanometric metal clusters on their microporous channels and cavities, showing an enhanced catalytic performance. As a first step towards the functionalization of these clusters as photocatalysts as well, this work addresses the optical properties of zeolite-encapsulated Cu-TiO nanoparticles as well as their application in the photo-induced activation of CO by sunlight. Model density functional theory (DFT) calculations indicate the stability of the Cu cluster adsorbed on the TiO nanoparticles filling the pores of a model zeolite structure.

View Article and Find Full Text PDF

[Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].

Se Pu

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.

View Article and Find Full Text PDF

Administering medication precisely to the inflamed intestinal sites to treat ulcerative colitis (UC), with minimized side effects, is of urgent need. In UC, the inflammation damaged mucosa contains a large number of amino groups which are positively charged, providing new opportunities for drug delivery system design. Here, we report an oral drug delivery system utilizing the tacrolimus-loaded poly (lactic-co-glycolic acid) (TAC/PLGA) particles with an adhesion coating by in situ UV-triggered polymerization of polyacrylic acid and N-hydroxysuccinimide (PAA-NHS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!