Palladium-Catalyzed Enantioselective Migratory Hydroamidocarbonylation of Amide-Linked Alkenes to Access Chiral α-Alkyl Succinimides.

Angew Chem Int Ed Engl

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

Published: October 2024

A Pd-catalyzed asymmetric isomerization-hydroamidocarbonylation of amide-containing alkenes was developed, affording a variety of chiral α-alkyl succinimides in moderate to good yields with high enantioselectivities. The key to success was introducing bulky 1-adamentyl P-substitution and 2,3,5,6-tetramethoxyphenyl group into the rigid P-chirogenic bisphosphine ligand to create stronger steric hinderance and deeper catalytic pocket. By this approach, regio- or stereo-convergent synthesis of enantiomeric succinimides from the mixture of olefin isomers was achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202410967DOI Listing

Publication Analysis

Top Keywords

chiral α-alkyl
8
α-alkyl succinimides
8
palladium-catalyzed enantioselective
4
enantioselective migratory
4
migratory hydroamidocarbonylation
4
hydroamidocarbonylation amide-linked
4
amide-linked alkenes
4
alkenes access
4
access chiral
4
succinimides pd-catalyzed
4

Similar Publications

Helical Assemblies of Colloidal Nanocrystals with Long-Range Order and Their Fusion into Continuous Structures.

J Am Chem Soc

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

Chirality epitomizes the sophistication of chemistry, representing some of its most remarkable achievements. Yet, the precise synthesis of chiral structures from achiral building blocks remains a profound and enduring challenge in synthetic chemistry and materials science. Here, we demonstrate that achiral colloidal nanocrystals, including Au and Ag nanocrystals, can assemble into long-range-ordered helical assemblies with the assistance of chiral molecules.

View Article and Find Full Text PDF

We report the synthesis of three radical-cation salts of BEDT-TTF from racemic tris(oxalato)ferrate by electrocrystallization in the presence of chiral molecules. In the presence of enantiopure l-(+)-tartaric acid, we observe spontaneous resolution of the labile tris(oxalato)ferrate anion to produce the chiral radical-cation salt α-(BEDT-TTF)[Δ-Fe(CO)].[l-(+)-tartaric acid] which contains only the Δ enantiomer of Fe(CO).

View Article and Find Full Text PDF

Pnictogen Bond-Mediated Coassemblies for Noncovalent Molecular Glass.

Nano Lett

January 2025

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

Pnictogen bond (PnB) occurring on the group-15 elements is recognized as σ- or π-hole-based interaction that has garnered attention in the fields of anion recognition and organocatalysis. Due to the polyvalent feature of pnictogens and high directionality, PnB possesses potential in the design of convergent coassembled materials with acceptors containing lone pair electrons or anions, which however is rarely explored so far. Herein, we unveil the role of antimony (Sb)-based PnB donors in producing self-assembled chiroptical materials with lone pair electron containing acceptors.

View Article and Find Full Text PDF

Accurate DNA Sequence Prediction for Sorting Target-Chirality Carbon Nanotubes and Manipulating Their Functionalities.

ACS Nano

January 2025

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.

Synthetic single-wall carbon nanotubes (SWCNTs) contain various chiralities, which can be sorted by DNA. However, finding DNA sequences for this purpose mainly relies on trial-and-error methods. Predicting the right DNA sequences to sort SWCNTs remains a substantial challenge.

View Article and Find Full Text PDF

Periostin-mediated NOTCH1 activation between tumor cells and HSCs crosstalk promotes liver metastasis of small cell lung cancer.

J Exp Clin Cancer Res

January 2025

National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Background: Metastasis is the primary cause of mortality in small cell lung cancer (SCLC), with the liver being a predominant site for distal metastasis. Despite this clinical significance, mechanisms underlying the interaction between SCLC and liver microenvironment, fostering metastasis, remain unclear.

Methods: SCLC patient tissue array, bioinformatics analysis were performed to demonstrate the role of periostin (POSTN) in SCLC progression, metastasis, and prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!