Vertebrate motile cilia are classified as (9+2) or (9+0), based on the presence or absence of the central pair apparatus, respectively. Cryogenic electron microscopy analyses of (9+2) cilia have uncovered an elaborate axonemal protein composition. The extent to which these features are conserved in (9+0) cilia remains unclear. CFAP53, a key axonemal filamentous microtubule inner protein (fMIP) and a centriolar satellites component, is essential for motility of (9+0), but not (9+2) cilia. Here, we show that in (9+2) cilia, CFAP53 functions redundantly with a paralogous fMIP, MNS1. MNS1 localises to ciliary axonemes, and combined loss of both proteins in zebrafish and mice caused severe outer dynein arm loss from (9+2) cilia, significantly affecting their motility. Using immunoprecipitation, we demonstrate that, whereas MNS1 can associate with itself and CFAP53, CFAP53 is unable to self-associate. We also show that additional axonemal dynein-interacting proteins, two outer dynein arm docking (ODAD) complex members, show differential localisation between types of motile cilia. Together, our findings clarify how paralogous fMIPs, CFAP53 and MNS1, function in regulating (9+2) versus (9+0) cilia motility, and further emphasise extensive structural diversity among these organelles.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.202737DOI Listing

Publication Analysis

Top Keywords

9+2 cilia
16
motile cilia
12
cilia
9
key axonemal
8
microtubule inner
8
complex members
8
vertebrate motile
8
9+0 cilia
8
outer dynein
8
dynein arm
8

Similar Publications

Recombinant human FOXJ1 protein binds DNA, forms higher-order oligomers, has gel-shifting domains and contains intrinsically disordered regions.

Protein Expr Purif

March 2025

School of Biological Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai, 400098, India. Electronic address:

Forkhead box protein J1 (FOXJ1) is the key transcriptional regulator during the conversion of mammalian primary cilium with a 9 + 0 architecture to the motile (9 + 2) one. The nucleotide sequences of the full-length and DNA-binding domain (DBD) of the open reading frame (ORF) were isolated and expressed into E. coli as 6xHis-tagged proteins.

View Article and Find Full Text PDF

Vertebrate motile cilia are classified as (9+2) or (9+0), based on the presence or absence of the central pair apparatus, respectively. Cryogenic electron microscopy analyses of (9+2) cilia have uncovered an elaborate axonemal protein composition. The extent to which these features are conserved in (9+0) cilia remains unclear.

View Article and Find Full Text PDF

Structure and function of FAP47 in the central pair apparatus of Chlamydomonas flagella.

Cytoskeleton (Hoboken)

November 2024

Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

Motile cilia have a so-called "9 + 2" structure, which consists of nine doublet microtubules and a central pair apparatus. The central pair apparatus (CA) is thought to interact mechanically with radial spokes and to control the flagellar beating. Recently, the components of the CA have been identified by proteomic and genomic analyses.

View Article and Find Full Text PDF

Studies on functional traits of aquatic communities are useful for understanding the ecosystem dynamics as well as the diversity of ecological niches. Here, we characterize zooplankton functional groups and which limnological factors are responsible to changes in traits. Water samples were collected to evaluate limnological parameters and vertical hauls with plankton net (68 μm) were performed to characterize the community in seven reservoirs (Itupararanga, Atibainha, Salto Grande, Rio Grande, Igaratá, Barra Bonita, and Broa, São Paulo state, Brazil).

View Article and Find Full Text PDF

Dynein is a minus-end-directed motor that generates oscillatory motion in eukaryotic flagella. Cyclic beating, which is the most significant feature of a flagellum, occurs by sliding spatiotemporal regulation by dynein along microtubules. To elucidate oscillation generated by dynein in flagellar beating, we examined its mechanochemical properties under three different axonemal dissection stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!