Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Various nuclear processes, such as transcriptional control, occur within discrete structures known as foci that are discernable through the immunofluorescence technique. Investigating the dynamics of these foci under diverse cellular conditions via microscopy yields valuable insights into the molecular mechanisms governing cellular identity and functions. However, performing immunofluorescence assays across different cell types and assessing alterations in the assembly, diffusion, and distribution of these foci present numerous challenges. These challenges encompass complexities in sample preparation, determination of parameters for analyzing imaging data, and management of substantial data volumes. Moreover, existing imaging workflows are often tailored for proficient users, thereby limiting accessibility to a broader audience. In this study, we introduce an optimized immunofluorescence protocol tailored for investigating nuclear proteins in different human primary T cell types that can be customized for any protein of interest and cell type. Furthermore, we present a method for unbiasedly quantifying protein staining, whether they form distinct foci or exhibit a diffuse nuclear distribution. Our proposed method offers a comprehensive guide, from cellular staining to analysis, leveraging a semi-automated pipeline developed in Jython and executable in Fiji. Furthermore, we provide a user-friendly Python script to streamline data management, publicly accessible on a Google Colab notebook. Our approach has demonstrated efficacy in yielding highly informative immunofluorescence analyses for proteins with diverse patterns of nuclear organization across different contexts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/66874 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!