Unlabelled: Bacteria embellish their cell envelopes with a variety of specialized polysaccharides. Biosynthesis pathways for these glycans are complex, and final products vary greatly in their chemical structures, physical properties, and biological activities. This tremendous diversity comes from the ability to arrange complex pools of monosaccharide building blocks into polymers with many possible linkage configurations. Due to the complex chemistry of bacterial glycans, very few biosynthetic pathways have been defined in detail. As part of an initiative to characterize novel polysaccharide biosynthesis enzymes, we isolated a bacterium from Lake Michigan called sp. LM7 that is proficient in exopolysaccharide (EPS) production. We identified genes that contribute to EPS biosynthesis in LM7 by screening a transposon mutant library for colonies displaying altered colony morphology. A gene cluster was identified that appears to encode a complete dependent polysaccharide assembly pathway. Deleting individual genes in this cluster caused a non-mucoid phenotype and a corresponding loss of EPS secretion, confirming the role of this gene cluster in polysaccharide production. We extracted EPS from LM7 cultures and determined that it contains a linear chain of 3- and 4-linked glucose, galactose, and glucuronic acid residues. Finally, we show that the EPS pathway in sp. LM7 diverges from that of sphingan-family EPSs and adhesive polysaccharides such as the holdfast that are present in other . Our approach of characterizing complete biosynthetic pathways holds promise for engineering polysaccharides with valuable properties.

Importance: Bacteria produce complex polysaccharides that serve a range of biological functions. These polymers often have properties that make them attractive for industrial applications, but they remain woefully underutilized. In this work, we studied a novel polysaccharide called promonan that is produced by sp. LM7, a bacterium we isolated from Lake Michigan. We extracted promonan from LM7 cultures and identified which sugars are present in the polymer. We also identified the genes responsible for polysaccharide production. Comparing the promonan genes to those of other bacteria showed that promonan is distinct from previously characterized polysaccharides. We conclude by discussing how the promonan pathway could be used to produce new polysaccharides through genetic engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340318PMC
http://dx.doi.org/10.1128/jb.00169-24DOI Listing

Publication Analysis

Top Keywords

biosynthetic pathways
8
novel polysaccharide
8
lake michigan
8
identified genes
8
gene cluster
8
polysaccharide production
8
lm7 cultures
8
polysaccharides
6
lm7
6
polysaccharide
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!