Mechanically interlocked molecules are a class of compounds used for controlling directional movement when barriers can be raised and lowered using external stimuli. Applied voltages can turn on redox states to alter electrostatic barriers but their use for directing motion requires knowledge of their impact on the kinetics. Herein, we make the first measurements on the movement of cyclobis(paraquat-p-phenylene) (CBPQT) across the radical-cation state of monopyrrolotetrathiafulvalene (MPTTF) in a [2]rotaxane using variable scan-rate electrochemistry. The [2]rotaxane is designed in a way that directs CBPQT to a high-energy co-conformation upon oxidation of MPTTF to either the radical cation (MPTTF⋅) or the dication (MPTTF). H NMR spectroscopic investigations carried out in acetonitrile at 298 K showed direct interconversion to the thermodynamically more stable ground-state co-conformation with CBPQT moving across the oxidized MPTTF electrostatic barrier. The electrochemical studies revealed that interconversion takes place by movement of CBPQT across both the MPTTF (19.3 kcal mol) and MPTTF (18.7 kcal mol) barriers. The outcome of our studies shows that MPTTF has three accessible redox states that can be used to kinetically control the movement of the ring component in mechanically interlocked molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202402377 | DOI Listing |
Metal oxides are promising catalysts for small molecule hydrogen chemistries, mediated by interfacial proton-coupled electron transfer (PCET) processes. Engineering the mechanism of PCET has been shown to control the selectivity of reduced products, providing an additional route for improving reductive catalysis with metal oxides. In this work, we present kinetic resolution of the rate determining proton-transfer step of PCET to a titanium-doped POV, TiVO(OCH) with 9,10-dihydrophenazine by monitoring the loss of the cationic radical intermediate using stopped-flow analysis.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Science and Technology, Nottingham Trent University, Clifton Lane, Clifton, Nottingham, NG11 8NS, UK.
This paper reports the synthesis, crystal structures and conducting properties of the first BEDT-TTF radical-cation salts with symmetry tris-coordinated racemic lanthanide(III) anions. It is also the first crystallographic determination of the nine-coordinate tris(chelidonato)terbate and tris(chelidonato)dysprosate anions (chelidonic acid = clo = 4-oxo-4-pyran-2,6-dicarboxylic acid). Salt α-(BEDT-TTF)M(chelidonato)·EtOH·2HO is semimetallic for M = Tb, and semiconducting for M = Dy.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
The work establishes the salt of a tetra-cationic distibane, [LSb][CFSO] = [][OTf] (CFSO = OTf), stabilized by a bis(α-iminopyridine) ligand , defying the Coulombic repulsion. The synthetic approach involved a dehydrocoupling reaction when a mixture of and Sb(OTf) in a 1:1 ratio was treated with EtSiH/LiBEtH as the hydride source. Compound [][OTf] was also achieved from [LSbCl][OTf] as a precursor and using EtSiH.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
Proton-electron mixed conductors (PEMCs) are an essential component for potential applications in hydrogen separation and energy conversion devices. However, the exploration of PEMCs with excellent mixed conduction, which is quantified by the ambipolar conductivity, σ = σσ/(σ + σ) (σ: electronic conductivity; σ: proton conductivity), is still a great challenge, largely due to the lack of structural characterization of both conducting mechanisms. In this study, we prepared a molecule-based proton-electron mixed-conducting cation radical salt, (ET)[Pt(pop)(Hpop)]·PhCN (ET: bis(ethylenedithio)tetrathiafulvalene, pop: PHO), by electrocrystallization.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
Sunlight irradiation of dissolved organic matter (DOM) in surface water results in the production of photochemically produced reactive intermediates (PPRIs). This process is inevitably influenced by co-existing metal ions in aquatic environments; However, the underlying mechanism remains unclear. In this study, the effect of co-existing copper ion (Cu) on PPRIs produced by irradiation of DOM was systematically investigated, because Cu is a typical redox transient cation and has strong affinity to DOM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!