Quantifying stimulated emission in semiconductor nanocrystals (NCs) remains challenging due to masking of its effects on pump-probe spectra by excited state absorption and ground state bleaching signals. The absence of this defining photophysical parameter in turn impedes assignment of band edge electronic structure in many of these important fluorophores. Here we employ a generally applicable 3-pulse ultrafast spectroscopic method coined the "Spectator Exciton" (SX) approach to measure stimulated-emission efficiency in quantum confined inorganic perovskite CsPbBr NCs, the band edge electronic structure of which is the subject of lively ongoing debate. Our results show that in 5-6 nm CsPbBr NCs, a single exciton bleaches more than half of the intense band edge absorption band, while the cross section for stimulated emission from the same state is nearly 6 times weaker. Discussion of these findings in light of several recent electronic structure models for this material proves them unable to simultaneously explain both measures, proving the importance of this new input to resolving this debate. Along with femtosecond time-resolved photoluminescence measurements on the same sample, SX results also verify that biexciton interaction energy is intensely attractive with a magnitude of ∼80 meV. In light of this observation, our previous suggestion that biexciton interaction is repulsive is reassigned to hot phonon induced slowdown of carrier relaxation leading to direct Auger recombination from an excited state. The mechanism behind the extreme slowing of carrier cooling after several stages of exciton recombination remains to be determined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11273341PMC
http://dx.doi.org/10.1021/jacs.4c05412DOI Listing

Publication Analysis

Top Keywords

stimulated emission
12
band edge
12
electronic structure
12
quantum confined
8
excited state
8
edge electronic
8
cspbbr ncs
8
biexciton interaction
8
spectator exciton
4
exciton effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!