A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigation into the impact of charging rates on the stress development within silicon composite electrodes. | LitMetric

Silicon, renowned for its remarkable energy density, has emerged as a focal point in the pursuit of high-energy storage solutions for the next generation. Nevertheless, silicon electrodes are known to undergo significant volume expansion during the insertion of lithium ions, leading to structural deformation and the development of internal stresses, and causing a rapid decline in battery capacity and overall lifespan. To gain deeper insights into the intricacies of charge rate effects, this study employs a combination of in situ measurements and computational modeling to elucidate the cyclic performance of composite silicon electrodes. The findings derived from the established model and curvature measurement system unveil the substantial alterations in stress and deformation as a consequence of varying charge rates. Notably, the active layer experiences compressive forces that diminish as the charge rate decreases. At a charge rate of 0.2, the active layer endures a maximum stress of 89.145 MPa, providing a comprehensive explanation for the observed deterioration in cycling performance at higher charge rates. This study not only establishes a fundamental basis for subsequent stress analyses of silicon electrodes but also lays a solid foundation for further exploration of the impact of charge rates on composite silicon electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0218688DOI Listing

Publication Analysis

Top Keywords

silicon electrodes
16
charge rate
12
charge rates
12
composite silicon
8
active layer
8
silicon
6
charge
6
electrodes
5
investigation impact
4
impact charging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!