A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unifying the temperature dependent dynamics of glass formers. | LitMetric

Unifying the temperature dependent dynamics of glass formers.

J Chem Phys

Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, USA.

Published: July 2024

Strong changes in bulk properties, such as modulus and viscosity, are observed near the glass transition temperature, Tg, of amorphous materials. For more than a century, intense efforts have been made to define a microscopic origin for these macroscopic changes in properties. Using transition state theory (TST), we delve into the atomic/molecular level picture of how microscopic localized unit relaxations, or "cage rattles," evolve to macroscopic structural relaxations above Tg. Unit motion is broken down into two populations: (1) simultaneous rearrangement occurs among a critical number of units, nα, which ranges from 1 to 4, allowing a systematic classification of glass formers, GFs, that is compared to fragility; and (2) near Tg, adjacent units provide additional free volume for rearrangement, not simultaneously, but within the "primitive" lifetime, τ1, of one unit rattling in its cage. Relaxation maps illustrate how Johari-Goldstein β-relaxations stem from the rattle of nα units. We analyzed a wide variety of glassy materials and materials with a glassy response using literature data. Our four-parameter equation fits "strong" and "weak" GFs over the entire range of temperatures and also extends to other glassy systems, such as ion-transporting polymers and ferroelectric relaxors. The role of activation entropy in boosting preexponential factors to high "unphysical" apparent frequencies is discussed. Enthalpy-entropy compensation is clearly illustrated using the TST approach.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0211693DOI Listing

Publication Analysis

Top Keywords

glass formers
8
unifying temperature
4
temperature dependent
4
dependent dynamics
4
dynamics glass
4
formers strong
4
strong changes
4
changes bulk
4
bulk properties
4
properties modulus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!