Accurate ab initio based potential energy surface and kinetics of the Cl + NH3 → HCl + NH2 reaction.

J Chem Phys

State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.

Published: July 2024

The gas-phase reaction Cl + NH3 → HCl + NH2 is a prototypical hydrogen abstraction reaction, whose minimum energy path involves several intermediate complexes. In this work, a full-dimensional, spin-orbit corrected potential energy surface (SOC PES) is constructed for the ground electronic state of the Cl + NH3 reaction. About 52 000 energy points are sampled and calculated at the UCCSD(T)-F12a/aug-cc-pVTZ level, in which the data points located in the entrance channel are spin-orbit corrected. The spin-orbit corrections are predicted by a fitted three-dimensional energy surface from about 7520 energy points in the entrance channel at the level of CASSCF (15e, 11o)/aug-cc-pVTZ. The fundamental-invariant neural network method is utilized to fit the SOC PES, resulting in a total root mean square error of 0.12 kcal mol-1. The calculated thermal rate constants of the Cl + NH3 → HCl + NH2 reaction on the SOC PES with the soft-zero-point energy constraint agree reasonably well with the available experimental values.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0216562DOI Listing

Publication Analysis

Top Keywords

energy surface
12
nh3 →
12
→ hcl
12
hcl nh2
12
soc pes
12
potential energy
8
nh2 reaction
8
spin-orbit corrected
8
energy points
8
entrance channel
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!