Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We simulate the photodynamics of gas-phase cyclobutanone excited to the S2 state using fewest switches surface hopping (FSSH) dynamics powered by time-dependent density functional theory (TDDFT). We predict a total photoproduct yield of 8%, with a C3:C2 product ratio of 0 trajectories to 8 trajectories. One primary S2 → S1 conical intersection is identified involving the compression of an α-carbon-carbon-hydrogen bond angle. Excited state lifetimes computed with respect to electronic state populations were found to be 3.96 ps (S2 → S1) and 498 fs (S1 → S0). We also generate time-resolved difference pair distribution functions (ΔPDFs) from our TDDFT-FSSH dynamics results in order to generate direct comparisons with ultrafast electron diffraction experiment observables. Global and target analysis of time-resolved ΔPDFs produced a distinct set of lifetimes: (i) a 0.548 ps decay and (ii) a 1.69 ps decay, both resembling the S2 minimum, as well as (iii) a long decay that resembles the S1 minimum geometry and the fully separated C2 products. Finally, we contextualize our results by considering the impact of the most likely sources of significant errors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0203679 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!