Biosensors are currently among the most commonly used devices for analysing biomarkers and play an important role in environmental detection, food safety, and disease diagnosis. Researchers have developed multimodal biosensors instead of single-modal biosensors to meet increasing sensitivity, accuracy, and stability requirements. Metal nanoparticles (MNPs) are beneficial for preparing core probes for multimodal biosensors because of their excellent physical and chemical properties, such as easy regulation and modification, and because they can integrate diverse sensing strategies. This review mainly summarizes the excellent physicochemical properties of MNPs applied as biosensing probes and the principles of commonly used MNP-based multimodal sensing strategies. Recent applications and possible improvements of multimodal biosensors based on MNPs are also described, among which on-site inspection and sensitive detection are particularly important. The current challenges and prospects for multimodal biosensors based on MNPs may provide readers with a new perspective on this field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4an00140k | DOI Listing |
Sensors (Basel)
December 2024
Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA.
Alzheimer's disease (AD) and Alzheimer's Related Dementias (ADRD) are projected to affect 50 million people globally in the coming decades. Clinical research suggests that Mild Cognitive Impairment (MCI), a precursor to dementia, offers a critical window of opportunity for lifestyle interventions to delay or prevent the progression of AD/ADRD. Previous research indicates that lifestyle changes, including increased physical exercise, reduced caloric intake, and mentally stimulating activities, can reduce the risk of MCI.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
The last decade has seen significant progress in the development of flexible electronics and sensors, particularly for display technologies and healthcare applications. Advancements in scalable manufacturing, miniaturization, and integration have further extended the use of this new class of devices to smart agriculture, where multimodal sensors can be seamlessly attached to plants for continuous and remote monitoring. Among the various types of sensing devices for agriculture, flexible mechanical sensors have emerged as promising candidates for monitoring vital parameters, including growth rates and water flow, providing a new avenue for understanding plant health and growth under varied environmental conditions.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong, College of Life Science, Normal University, Shandong Normal University, Jinan, 250014, People's Republic of China.
A composite nanomaterial of Prussian blue@gold nanoparticles (PB@Au) with catalytic and photothermal properties was proposed, which combined with anti-matrix interference aptamers to achieve robust specificity and sensitivity in the detection of Salmonella typhimurium (S. typhimurium). The detection probe, PB@Au-Aptamer (PB@Au-Apt), was designed to exhibit high specificity for the target and catalyze the signal generation to produce a color change, thereby enabling rapid detection.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore.
To face the increasing requirement for grains as the global population continues to grow, improving both crop yield and quality has become essential. Plant health directly impacts crop quality and yield, making the development of plant health-monitoring technologies essential. Variable sensing technologies for outdoor/indoor farming based on different working principles have emerged as important tools for monitoring plants and their microclimates.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
This review examines recent advances in surface-enhanced Raman spectroscopy (SERS) for urinary metabolite analysis, focusing on the development and application of noble metal nanohybrids. We explore the diverse range of hybrid materials, including carbon-based, metal-organic-framework (MOF), silicon-based, semiconductor, and polymer-based systems, which have significantly improved SERS performance for detecting key urinary biomarkers. The principles underlying SERS enhancement in these nanohybrids are discussed, elucidating both electromagnetic and chemical enhancement mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!