Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Excitonic devices based on interlayer excitons in van der Waals heterobilayers are a promising platform for advancing photoelectric interconnection telecommunications. However, the absence of exciton emission in the crucial telecom C-band has constrained their practical applications. Here, this limitation is addressed by reporting exciton emission at 0.8 eV (1550 nm) in a chemically vapor-deposited, strictly aligned MoTe/MoS heterobilayer, resulting from the direct bandgap transitions of interlayer excitons as identified by momentum-space imaging of their electrons and holes. The decay mechanisms dominated by direct radiative recombination ensure constant emission quantum yields, a basic demand for efficient excitonic devices. The atomically sharp interface enables the resolution of two narrowly-splitter transitions induced by spin-orbit coupling, further distinguished through the distinct Landé g-factors as the fingerprint of spin configurations. By electrical control, the double transitions coupling into opposite circularly-polarized photon modes, preserve or reverse the helicities of the incident light with a degree of polarization up to 90%. The Stark effect tuning extends the emission energy range by over 150 meV (270 nm), covering the telecom C-band. The findings provide a material platform for studying the excitonic complexes and significantly boost the application prospects of excitonic devices in silicon photonics and all-optical telecommunications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202404371 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!