Background: Schizophrenia (SZ) is a psychiatric condition that adversely affects an individual's cognitive, emotional, and behavioral aspects. The etiology of SZ, although extensively studied, remains unclear, as multiple factors come together to contribute toward its development. There is a consistent body of evidence documenting the presence of structural and functional deviations in the brains of individuals with SZ. Moreover, the hereditary aspect of SZ is supported by the significant involvement of genomics markers. Therefore, the need to investigate SZ from a multi-modal perspective and develop approaches for improved detection arises.

Methods: Our proposed method employed a deep learning framework combining features from structural magnetic resonance imaging (sMRI), functional magnetic resonance imaging (fMRI), and genetic markers such as single nucleotide polymorphism (SNP). For sMRI, we used a pre-trained DenseNet to extract the morphological features. To identify the most relevant functional connections in fMRI and SNPs linked to SZ, we applied a 1-dimensional convolutional neural network (CNN) followed by layerwise relevance propagation (LRP). Finally, we concatenated these obtained features across modalities and fed them to the extreme gradient boosting (XGBoost) tree-based classifier to classify SZ from healthy control (HC).

Results: Experimental evaluation on clinical dataset demonstrated that, compared to the outcomes obtained from each modality individually, our proposed multi-modal approach performed classification of SZ individuals from HC with an improved accuracy of 79.01%.

Conclusion: We proposed a deep learning based framework that selects multi-modal (sMRI, fMRI and genetic) features efficiently and fuse them to obtain improved classification scores. Additionally, by using Explainable AI (XAI), we were able to pinpoint and validate significant functional network connections and SNPs that contributed the most toward SZ classification, providing necessary interpretation behind our findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239396PMC
http://dx.doi.org/10.3389/fpsyt.2024.1384842DOI Listing

Publication Analysis

Top Keywords

deep learning
12
magnetic resonance
8
resonance imaging
8
fmri genetic
8
multi-modal
4
multi-modal deep
4
learning imaging
4
imaging genomic
4
genomic data
4
data schizophrenia
4

Similar Publications

Prebiotics, traditionally linked to gut health, are increasingly recognized for their systemic benefits, influencing multiple organ systems through interactions with the gut microbiota. Compounds like inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) enhance short-chain fatty acid (SCFA) production, benefiting neurocognitive health, cardiovascular function, immune modulation, and skin integrity. Advances in biotechnology, including deep eutectic solvents (DES) for extraction and machine learning (ML) for personalized formulations, have expanded prebiotic applications.

View Article and Find Full Text PDF

Generative artificial intelligence enables the generation of bone scintigraphy images and improves generalization of deep learning models in data-constrained environments.

Eur J Nucl Med Mol Imaging

January 2025

Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Austria.

Purpose: Advancements of deep learning in medical imaging are often constrained by the limited availability of large, annotated datasets, resulting in underperforming models when deployed under real-world conditions. This study investigated a generative artificial intelligence (AI) approach to create synthetic medical images taking the example of bone scintigraphy scans, to increase the data diversity of small-scale datasets for more effective model training and improved generalization.

Methods: We trained a generative model on Tc-bone scintigraphy scans from 9,170 patients in one center to generate high-quality and fully anonymized annotated scans of patients representing two distinct disease patterns: abnormal uptake indicative of (i) bone metastases and (ii) cardiac uptake indicative of cardiac amyloidosis.

View Article and Find Full Text PDF

In a rapidly evolving healthcare environment, artificial intelligence (AI) is transforming diagnostic techniques and personalised medicine. This is also seen in osseous biopsies. AI applications in radiomics, histopathology, predictive modelling, biopsy navigation, and interdisciplinary communication are reshaping how bone biopsies are conducted and interpreted.

View Article and Find Full Text PDF

Automatic multimodal registration of cone-beam computed tomography and intraoral scans: a systematic review and meta-analysis.

Clin Oral Investig

January 2025

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.

Objectives: To evaluate recent advances in the automatic multimodal registration of cone-beam computed tomography (CBCT) and intraoral scans (IOS) and their clinical significance in dentistry.

Methods: A comprehensive literature search was conducted in October 2024 across the PubMed, Web of Science, and IEEE Xplore databases, including studies that were published in the past decade. The inclusion criteria were as follows: English-language studies, randomized and nonrandomized controlled trials, cohort studies, case-control studies, cross-sectional studies, and retrospective studies.

View Article and Find Full Text PDF

Mining versatile feruloyl esterases: phylogenetic classification, structural features, and deep learning model.

Bioresour Bioprocess

January 2025

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.

Feruloyl esterases (FEs, EC 3.1.1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!