Post-Processing of MCMC.

Annu Rev Stat Appl

School of Mathematics, Statistics & Physics, Newcastle University, NE1 7RU, UK.

Published: March 2022

Markov chain Monte Carlo is the engine of modern Bayesian statistics, being used to approximate the posterior and derived quantities of interest. Despite this, the issue of how the output from a Markov chain is post-processed and reported is often overlooked. Convergence diagnostics can be used to control bias via burn-in removal, but these do not account for (common) situations where a limited computational budget engenders a bias-variance trade-off. The aim of this article is to review state-of-the-art techniques for post-processing Markov chain output. Our review covers methods based on discrepancy minimisation, which directly address the bias-variance trade-off, as well as general-purpose control variate methods for approximating expected quantities of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616193PMC
http://dx.doi.org/10.1146/annurevstatistics-040220-091727DOI Listing

Publication Analysis

Top Keywords

markov chain
12
quantities interest
8
bias-variance trade-off
8
post-processing mcmc
4
mcmc markov
4
chain monte
4
monte carlo
4
carlo engine
4
engine modern
4
modern bayesian
4

Similar Publications

Introduction: To interact with the environment, it is crucial to distinguish between sensory information that is externally generated and inputs that are self-generated. The sensory consequences of one's own movements tend to induce attenuated behavioral- and neural responses compared to externally generated inputs. We propose a computational model of sensory attenuation (SA) based on Bayesian Causal Inference, where SA occurs when an internal cause for sensory information is inferred.

View Article and Find Full Text PDF

Frameshifting is an essential mechanism employed by many viruses including coronaviruses to produce viral proteins from a compact RNA genome. It is facilitated by specific RNA folds in the frameshift element (FSE), which has emerged as an important therapeutic target. For SARS-CoV-2, a specific 3-stem pseudoknot has been identified to stimulate frameshifting.

View Article and Find Full Text PDF

Advances in next-generation sequencing technology have enabled the high-throughput profiling of metagenomes and accelerated microbiome studies. Recently, there has been a rise in quantitative studies that aim to decipher the microbiome co-occurrence network and its underlying community structure based on metagenomic sequence data. Uncovering the complex microbiome community structure is essential to understanding the role of the microbiome in disease progression and susceptibility.

View Article and Find Full Text PDF

Non-Parametric Estimation for Semi-Competing Risks Data With Event Misascertainment.

Stat Med

February 2025

Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN.

The semi-competing risks data model is a special type of disease-state model that focuses on studying the association between an intermediate event and a terminal event and proves to be a useful tool in modeling disease progression. The study of the semi-competing risk data model not only allows us to evaluate whether a disease episode is related to death but also provides a toolkit to predict death, given that the episode occurred at a certain time. However, the computation of the semi-competing risk models is a numerically challenging task.

View Article and Find Full Text PDF

Efficient stochastic simulation of piecewise-deterministic Markov processes and its application to the Morris-Lecar model of neural dynamics.

Biol Cybern

January 2025

Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.

Piecewise-deterministic Markov processes combine continuous in time dynamics with jump events, the rates of which generally depend on the continuous variables and thus are not constants. This leads to a problem in a Monte-Carlo simulation of such a system, where, at each step, one must find the time instant of the next event. The latter is determined by an integral equation and usually is rather slow in numerical implementation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!