AI Article Synopsis

  • - Dual specificity protein phosphatase 6 (DUSP6) is important in regulating late-onset Alzheimer's disease (AD), with lower DUSP6 levels linked to worse dementia ratings in humans and decreased levels observed in a mouse model of the disease.
  • - Researchers injected AAV5-DUSP6 into the brains of 5xFAD mice to increase DUSP6 expression and found that it improved memory deficits and reduced amyloid plaques in male mice but not in female mice, while also decreasing microglial activation in both sexes.
  • - Although DUSP6 overexpression helped reduce neuroinflammation and activated microglia in both male and female mice, the improvement in memory was sex-dependent, indicating different underlying mechanisms

Article Abstract

Introduction: Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal gene network that regulates late-onset Alzheimer's disease (AD). Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating (CDR) in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model.

Methods: To investigate the role of DUSP6 in AD, we stereotactically injected AAV5-DUSP6 or AAV5-GFP (control) into the dorsal hippocampus (dHc) of both female and male 5xFAD or wild type mice, to induce overexpression of DUSP6 or GFP.

Results: Barnes maze testing indicated that DUSP6 overexpression in the dHc of 5xFAD mice improved memory deficits and was associated with reduced amyloid plaque load, Aß and Aß levels, and amyloid precursor protein processing enzyme BACE1, in male but not in female mice. Microglial activation, which was increased in 5xFAD mice, was significantly reduced by dHc DUSP6 overexpression in both males and females, as was the number of "microglial clusters," which correlated with reduced amyloid plaque size. Transcriptomic profiling of female 5xFAD hippocampus revealed upregulation of inflammatory and extracellular signal-regulated kinase pathways, while dHc DUSP6 overexpression in female 5xFAD mice downregulated a subset of genes in these pathways. Gene ontology analysis of DEGs ( < 0.05) identified a greater number of synaptic pathways that were regulated by DUSP6 overexpression in male compared to female 5xFAD.

Discussion: In summary, DUSP6 overexpression in dHc reduced amyloid deposition and memory deficits in male but not female 5xFAD mice, whereas reduced neuroinflammation and microglial activation were observed in both males and females, suggesting that DUSP6-induced reduction of microglial activation did not contribute to sex-dependent improvement in memory deficits. The sex-dependent regulation of synaptic pathways by DUSP6 overexpression, however, correlated with the improvement of spatial memory deficits in male but not female 5xFAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239576PMC
http://dx.doi.org/10.3389/fnagi.2024.1400447DOI Listing

Publication Analysis

Top Keywords

dusp6 overexpression
28
memory deficits
20
5xfad mice
20
female 5xfad
16
dusp6
12
deficits male
12
reduced amyloid
12
male female
12
microglial activation
12
5xfad
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!