Purpose: The World Health Organization has identified (KP) as a significant threat to global public health. The rising threat of carbapenem-resistant (CRKP) leads to prolonged hospital stays and higher medical costs, necessitating faster diagnostic methods. Traditional antibiotic susceptibility testing (AST) methods demand at least 4 days, requiring 3 days on average for culturing and isolating the bacteria and identifying the species using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), plus an extra day for interpreting AST results. This lengthy process makes traditional methods too slow for urgent clinical situations requiring rapid decision-making, potentially hindering prompt treatment decisions, especially for fast-spreading infections such as those caused by CRKP. This research leverages a cutting-edge diagnostic method that utilizes an artificial intelligence-clinical decision support system (AI-CDSS). It incorporates machine learning algorithms for the swift and precise detection of carbapenem-resistant and colistin-resistant strains.

Patients And Methods: We selected 4307 KP samples out of a total of 52,827 bacterial samples due to concerns about multi-drug resistance using MALDI-TOF MS and Vitek-2 systems for AST. It involved thorough data preprocessing, feature extraction, and machine learning model training fine-tuned with GridSearchCV and 5-fold cross-validation, resulting in high predictive accuracy, as demonstrated by the receiver operating characteristic and area under the curve (AUC) scores, laying the groundwork for our AI-CDSS.

Results: MALDI-TOF MS analysis revealed distinct intensity profiles differentiating CRKP and susceptible strains, as well as colistin-resistant (CoRKP) and susceptible strains. The Random Forest Classifier demonstrated superior discriminatory power, with an AUC of 0.96 for detecting CRKP and 0.98 for detecting CoRKP.

Conclusion: Integrating MALDI-TOF MS with machine learning in an AI-CDSS has greatly expedited the detection of KP resistance by approximately 1 day. This system offers timely guidance, potentially enhancing clinical decision-making and improving treatment outcomes for KP infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246630PMC
http://dx.doi.org/10.2147/IDR.S470821DOI Listing

Publication Analysis

Top Keywords

machine learning
16
artificial intelligence-clinical
8
intelligence-clinical decision
8
decision support
8
support system
8
susceptible strains
8
system infectious
4
infectious disease
4
disease control
4
control combatting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!