This study examined the surface modification of titanium (Ti) implants to enhance early-stage osseointegration, which reduced the failure rate of internal fixation in osteoporotic fractures that inherently decrease in bone mass and strength. We employed a layer-by-layer electroassembly technique to deposit catalpol-containing hyaluronic acid/chitosan multilayers onto the surface of Ti implants. To evaluate the in vitro osteoinductive effects of catalpol-coated Ti implants, the robust osteoblast differentiation capacity of the murine preosteoblast cell line, MC3T3-E1, was employed. Furthermore, the performance of these implants was evaluated in vivo through femoral intramedullary implantation in Sprague-Dawley rats. The engineered implant effectively regulated catalpol release, promoting increased bone formation during the initial stages of implantation. The in vitro findings demonstrated that catalpol-coated Ti surfaces boosted ALP activity, cell proliferation as measured by CCK-8, and osteogenic protein expression via WB analysis, surpassing the uncoated Ti group ( < 0.05). In vivo micro-computed tomography (CT) and histological analyses revealed that catalpol-coated Ti significantly facilitated the formation and remodeling of new bone in osteoporotic rats at 14 days post-implantation. This study outlines a comprehensive and straightforward methodology for the fabrication of biofunctional Ti implants to address osteoporosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238284PMC
http://dx.doi.org/10.1021/acsomega.4c02322DOI Listing

Publication Analysis

Top Keywords

osteoporotic rats
8
implants
5
enhancement local
4
local osseointegration
4
osseointegration implant
4
implant stability
4
stability titanium
4
titanium implant
4
implant osteoporotic
4
rats biomimetic
4

Similar Publications

The objective of this study is to fabricate and develop hydroxypropyl methylcellulose (HPMC) hydrogel (HG)-based composite bone cements with incorporation of hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and with/without polymethylmethacrylate (PMMA) for vertebroplasty. For animal study, twenty female Wister rats (250-300 g, 12 weeks of age) were divided into four groups including a two non-ovariectomy (NOVX) groups and two ovariectomy (OVX)-induced osteoporosis groups. Two prepared biocomposites including HG/β-TCP/HA and HG/β-TCP/HA/PMMA were injected into the tibial defects of both OVX and NOVX rats for evaluating in vivo osteogenesis after 12 weeks.

View Article and Find Full Text PDF

Introduction: is a medicinal plant that produces silymarin, which has been demonstrated to possess antiviral, anti-neurodegenerative, and anticancer activities. Silybin (A+B) are two major hepatoprotective flavonolignans produced predominantly in fruits. Several attempts have been made to increase the synthesis of silymarin, or its primary components, silybin (A+B).

View Article and Find Full Text PDF

Osteoporosis is caused by an imbalance between bone resorption and formation, which decreases bone mass and strength and increases the risk of fracture. Therefore, osteoporosis is treated with oral resorption inhibitors, such as bisphosphonates, and parenteral osteogenic drugs, including parathyroid hormone and antisclerostin antibodies. However, orally active osteogenic drugs have not yet been developed.

View Article and Find Full Text PDF

The Forsythia has been used in herbal medicine, and the leaf is also expected to contain various putative bioactive substances. In this study, we investigated the effects of Forsythia viridissima leaf extract (FLE) on bone metabolism. The anti-osteoporotic effect of FLE was determined in male rats fed a low-calcium diet.

View Article and Find Full Text PDF

This study aims to investigate and compare the effects of short and long-term application of low-level laser therapy on the mandibular alveolar process of osteoporotic rats. Forty adult male albino rats were included in this study. After animal grouping, the experimental group received dexamethasone (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!