Atrial fibrillation (AF), the most prevalent cardiac rhythm disorder, significantly increases hospitalization and health risks. Reverting from AF to sinus rhythm (SR) often requires intensive interventions. This study presents a deep-learning model capable of predicting the transition from SR to AF on average 30.8 min before the onset appears, with an accuracy of 83% and an F1 score of 85% on the test data. This performance was obtained from R-to-R interval signals, which can be accessible from wearable technology. Our model, entitled Warning of Atrial Fibrillation (WARN), consists of a deep convolutional neural network trained and validated on 24-h Holter electrocardiogram data from 280 patients, with 70 additional patients used for testing and further evaluation on 33 patients from two external centers. The low computational cost of WARN makes it ideal for integration into wearable technology, allowing for continuous heart monitoring and early AF detection, which can potentially reduce emergency interventions and improve patient outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11240177 | PMC |
http://dx.doi.org/10.1016/j.patter.2024.100970 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!