The effects of environmental stress on animal life are gaining importance with climate change. Diapause is a dormancy program that occurs in response to an adverse environment, followed by resumption of development and reproduction upon the return of favorable conditions. Diapause is a complex trait, so we leveraged the genetic reference panel (DGRP) lines and conducted a Genome-Wide Association Study (GWAS) to characterize the genetic basis of diapause. We assessed post-diapause and non-diapause fecundity across 193 DGRP lines. GWAS revealed 546 genetic variants, encompassing single nucleotide polymorphisms, insertions and deletions associated with post-diapause fecundity. We identified 291 candidate diapause-associated genes, 40 of which had previously been associated with diapause, and 89 of which were associated with more than one SNP. Gene network analysis indicated that the diapause-associated genes were primarily linked to neuronal and reproductive system development. Similarly, comparison with results from other fly GWAS revealed the greatest overlap with olfactory-behavior-associated and fecundity-and-lifespan-associated genes. An RNAi screen of selected candidates identified two neuronal genes, Dip- and Scribbler, to be required during recovery for post-diapause fecundity. We complemented the genetic analysis with a test of which neurons are required for successful diapause. We found that although amputation of the antenna had little to no effect on non-diapause lifespan, it reduced diapause lifespan and postdiapause fecundity. We further show that olfactory receptor neurons and temperature-sensing neurons are required for successful recovery from diapause. Our results provide insights into the molecular, cellular, and genetic basis of adult reproductive diapause in .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244867 | PMC |
http://dx.doi.org/10.1101/2024.03.10.584341 | DOI Listing |
Front Endocrinol (Lausanne)
January 2025
School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China.
Objective: Diabetic neuropathy (DN), a common and debilitating complication of diabetes, significantly impairs the quality of life of affected individuals. While multiple studies have indicated changes in the expression of specific matrix metalloproteinases (MMPs) in patients with DN, and basic research has reported the impact of MMPs on DN, there is a lack of systematic research and the causal relationship remains unclear. The objective of this research is to investigate the casual relationship between MMPs and DN through two-sample Mendelian randomization (MR).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, Liaoning, China.
Objective: The impact of lipid-lowering medications on chronic kidney disease (CKD) remains a subject of debate. This Mendelian randomization (MR) study aims to elucidate the potential effects of lipid-lowering drug targets on CKD development.
Methods: We extracted 11 genetic variants encoding targets of lipid-lowering drugs from published genome-wide association study (GWAS) summary statistics, encompassing LDLR, HMGCR, PCSK9, NPC1L1, APOB, ABCG5/ABCG8, LPL, APOC3, ANGPTL3, and PPARA.
Epstein-Barr virus (EBV) contributes to ~1.5% of human cancers, including lymphomas, gastric and nasopharyngeal carcinomas. In most of these, nearly 80 viral lytic genes are silenced by incompletely understood epigenetic mechanisms, precluding use of antiviral agents such as ganciclovir to treat the 200,000 EBV-associated cancers/year.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Ophthalmology, Emory University, Atlanta, GA, United States.
Objective: Myopia prevalence is increasing at alarming rates, yet the underlying mechanistic causes are not understood. Several studies have employed experimental animal models of myopia and transcriptome profiling to identify genes and pathways contributing to myopia. In this study, we determined the retinal transcriptome changes in response to form deprivation in mouse retinas.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder that predominantly affects elderly individuals across the globe. While genetic, environmental, and lifestyle factors are known to influence the onset of AD, the underlying mechanisms remain unclear.
Objective: To elucidate the intricate interplay between metabolites and immune cell activation in the ethology of AD, and to determine their collective impact on AD risk.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!