Social predation is a common strategy used by predators to subdue and consume prey. Animals that use this strategy have many ways of finding each other, organizing behaviors and consuming prey. There is wide variation in the extent to which these behaviors are coordinated and the stability of individual roles. This study characterizes social predation by the nudibranch mollusc, , which is a specialist predator that eats only the sea anemone, . A combination of experimental and modeling approaches showed that does predate upon in groups. The extent of social feeding was not altered by length of food deprivation, suggesting that animals are not shifting strategies based on internal state. It was unclear what cues the individual used to find each other; choice assays testing whether they followed slime trails, were attracted to injured anemones, or preferred conspecifics feeding did not reveal any cues. Individuals did not exhibit stable roles, such as leader or follower, rather the population exhibited fission-fusion dynamics with temporary roles during predation. Thus, the provides an example of a specialist predator of dangerous prey that loosely organizes social feeding, which persists across hunger states and uses temporary individual roles; however, the cues that it uses for aggregation are unknown.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244926 | PMC |
http://dx.doi.org/10.1101/2024.07.01.600874 | DOI Listing |
J Fish Biol
January 2025
Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS) & Université de Toulouse (UPS), Toulouse, France.
Escape waves in animal groups, such as bird flocks and fish schools, have attracted a lot of attention, as they provide the opportunity to better understand how information can efficiently propagate in moving groups, and how individuals can coordinate their actions under the threat of predators. There is a lack of appropriate experimental protocols to study escape waves in highly social fish, in which the number of individuals initiating the escape and the identity of the initiators are controlled. Indeed, highly social fish or obligate schoolers have a tendency to not respond well or to freeze when tested in experimental setups designed for single individuals.
View Article and Find Full Text PDFCells
January 2025
Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Calambrone, Italy.
CLN8 and other neuronal ceroid lipofuscinoses (NCLs) often lead to cognitive decline, emotional disturbances, and social deficits, worsening with disease progression. Disrupted lysosomal pH, impaired autophagy, and defective dendritic arborization contribute to these symptoms. Using a zebrafish model, we identified significant impairments in locomotion, anxiety, and aggression, along with subtle deficits in social interactions, positioning zebrafish as a useful model for therapeutic studies in NCL.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
School of Biological Sciences, University of Bristol, Bristol, UK.
Many animals are capable of rapid dynamic colour change, which is particularly well represented in fishes. The proximate mechanisms of dynamic colour change in fishes are well understood; however, less attention has been given to understanding its ecological relevance. In this study, we investigate dynamic colour change in zebrafish () across multiple contexts, using a protocol to image the colouration of live fish without anaesthesia under standardized conditions.
View Article and Find Full Text PDFAnim Cogn
January 2025
Department of Biology, McGill University, Quebec, Canada.
Social learning, where animals learn from other individuals, occurs in many diverse species. The influential but debated 'costly information' hypothesis posits that animals will rely more on social information in high-risk contexts, such as under increased predation risk. We examined and compared the effects of perceived predation risk on social learning of foraging sites in female Trinidadian guppies from wild and domestic populations raised in common-garden environments.
View Article and Find Full Text PDFFront Aging Neurosci
December 2024
Department of Psychology, Game Design, and Physical Therapy, Movement and Rehabilitation Services, Northeastern University, Boston, MA, United States.
A growing literature suggests that declines in sensory/perceptual systems predate cognitive declines in aging, and furthermore, they are highly predictive for developing Alzheimer's disease and Alzheimer's related dementias (ADRD). While vision, hearing, olfaction, and vestibular function have each been shown to be related to ADRD, their causal relations to cognitive declines, how they interact with each other remains to be clarified. Currently, there is substantial debate whether sensory/perceptual systems that fail early in disease progression are causal in their contributions to cognitive load and/or social isolation or are simply coincident declines due to aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!