Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Males of some species, from horses to humans, require medical help for subfertility problems. There is an urgent need for novel molecular assays that reflect spermatozoal function. In the last 25 years, studies examined RNAs in spermatozoa as a window into gene expression during their development and, more recently, for their functions in early embryo development. In clinics, more dense spermatozoa are isolated by density gradient centrifugation before use in artificial insemination to increase pregnancy rates. The objectives of the current study were to discover and quantify the microRNAs in stallion spermatozoa and identify those with differential expression levels in more dense versus less dense spermatozoa. First, spermatozoa from seven stallions were separated into more dense and less dense populations by density gradient centrifugation. Next, small RNAs were sequenced from each of the 14 RNA samples. We identified 287 different mature microRNAs within the 11,824,720 total mature miRNA reads from stallion spermatozoa. The most prevalent was miR-10a/b-5p. The less dense spermatozoa had fewer mature microRNAs and more microRNA precursor sequences than more dense spermatozoa, perhaps indicating that less dense spermatozoa are less mature. Two of the most prevalent microRNAs in more dense stallion spermatozoa were predicted to target mRNAs that encode proteins that accelerate mRNA decay. Nine microRNAs were more highly expressed in more dense spermatozoa. Three of those microRNAs were predicted to target mRNAs that encode proteins involved in protein decay. Both mRNA and protein decay are very active in late spermiogenesis but not in mature spermatozoa. The identified microRNAs may be part of the mechanism to shut down those processes. The microRNAs with greater expression in more dense spermatozoa may be useful biomarkers for spermatozoa with greater functional capabilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/rda.14674 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!