Living organisms achieve homeostasis by using distinct mechanisms tailored to their physiological complexity. Unicellular organisms as well as plants, which are devoid of nervous systems, rely on covert sensing/detecting and equally covert responding mechanisms. Organisms with nervous systems rely on consciousness which is based on homeostatic feelings and the experiences and consequent subjectivity they generate. This article is part of the theme issue 'Sensing and feeling: an integrative approach to sensory processing and emotional experience'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444232 | PMC |
http://dx.doi.org/10.1098/rstb.2023.0243 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Purpose: Inflammatory processes have been involved in diabetic retinopathy (DR). Interleukin (IL)-17A, a pro-inflammatory cytokine, is associated with DR occurrence and development. However, mechanisms underlying the IL-17A impact on DR need further investigations.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China.
Purpose: Because chickens have excellent light perception properties, this study focused on investigating whether monochromatic light can cause photodamage in chicken retinal ganglion cells (RGCs).
Methods: Post-hatching day chickens were exposed to four different light-emitting diode light environments for five weeks, respectively, monochromatic blue light (480 nm), green light (560 nm), red light (660 nm), or white light (6000 K). The mechanisms through which monochromatic light influences the structure of the chicken retina were analyzed by detecting the morphological structure of the retina, gene and protein expression levels, and the ultrastructure of the optic nerve.
Methods Mol Biol
January 2025
Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
In the Drosophila brain, neuronal diversity originates from approximately 100 neural stem cells, each dividing asymmetrically. Precise mapping of cell lineages at the single-cell resolution is crucial for understanding the mechanisms that direct neuronal specification. However, existing methods for high-resolution lineage tracing are notably time-consuming and labor-intensive.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
CRISPR-Cas tools have recently been adapted for cell lineage tracing during development. Combined with single-cell RNA sequencing, these methods enable scalable lineage tracing with single-cell resolution. Here, I describe, scGESTALTv2, which combines cumulative CRISPR-Cas9 editing of a lineage barcode array with transcriptional profiling via droplet-based single-cell RNA sequencing (scRNA-seq).
View Article and Find Full Text PDFMethods Mol Biol
January 2025
IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing, People's Republic of China.
Mosaic analysis with double markers (MADM) is a powerful in vivo lineage tracing technique. It utilizes Cre recombinase-dependent interchromosomal recombination to restore the stable expression of two fluorescent proteins sparsely in individual dividing stem or progenitor cells and their progenies. Here, we describe the application of this technique for quantitative lineage analysis of radial glial progenitors in the developing mouse neocortex at the single-cell resolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!