Achieving the goal of generating all of the world's energy via renewable sources and significantly reducing the energy usage will require the development of novel, abundant, nontoxic energy conversion materials. Here, a cost-efficient and scalable continuous flow synthesis of CsCuI nanocrystals is developed as a basis for the rapid advancement of novel nanomaterials. Ideal precursor solutions are obtained through a novel batch synthesis, whose product served as a benchmark for the subsequent flow synthesis. Realizing this setup enabled a reproducible fabrication of CsCuI nanocrystals. The effect of volumetric flow rate and temperature on the final product's morphology and optical properties are determined, obtaining 21% quantum yield with the optimal configuration. Consequently, the size and morphology of the nanocrystals can be tuned with far more precision and in a much broader range than previously achievable. The flow setup is readily applicable to other relevant nanomaterials. It should enable a rapid determination of a material's potential and subsequently optimize its desired properties for renewable energy generation or efficient optoelectronics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202403572DOI Listing

Publication Analysis

Top Keywords

cscui nanocrystals
12
synthesis cscui
8
continuous flow
8
flow synthesis
8
flow
5
synthesis
4
nanocrystals
4
nanocrystals continuous
4
flow system
4
system achieving
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!