Intraperitoneal co-delivery of chemotherapeutic drugs (CDs) and immune checkpoint inhibitors (ICIs) brings hope to improve treatment outcomes in patients with peritoneal metastasis from ovarian cancer (OC). However, current intraperitoneal drug delivery systems face issues such as rapid drug clearance from lymphatic drainage, heterogeneous drug distribution, and uncontrolled release of therapeutic agents into the peritoneal cavity. Herein, we developed an injectable nanohydrogel by combining carboxymethyl chitosan (CMCS) with bioadhesive nanoparticles (BNPs) based on polylactic acid-hyperbranched polyglycerol. This system enables the codelivery of CD and ICI into the intraperitoneal space to extend drug retention. The nanohydrogel is formed by cross-linking of aldehyde groups on BNPs with amine groups on CMCS via reversible Schiff base bonds, with CD and ICI loaded separately into BNPs and CMCS network. BNP/CMCS nanohydrogel maintained the activity of the biomolecules and released drugs in a sustained manner over a 7 day period. The adhesive property, through the formation of Schiff bases with peritoneal tissues, confers BNPs with an extended residence time in the peritoneal cavity after being released from the nanohydrogel. In a mouse model, BNP/CMCS nanohydrogel loaded with paclitaxel (PTX) and anti-PD-1 antibodies (αPD-1) significantly suppressed peritoneal metastasis of OC compared to all other tested groups. In addition, no systemic toxicity of nanohydrogel-loaded PTX and αPD-1 was observed during the treatment, which supports potential translational applications of this delivery system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c02312DOI Listing

Publication Analysis

Top Keywords

peritoneal metastasis
12
intraperitoneal co-delivery
8
immune checkpoint
8
checkpoint inhibitors
8
peritoneal cavity
8
bnp/cmcs nanohydrogel
8
peritoneal
6
nanohydrogel
5
injectable nanocomposite
4
nanocomposite hydrogels
4

Similar Publications

Epithelial ovarian cancer (EOC) exhibits a unique mode of metastasis, involving spheroid formation in the peritoneum. Our research on EOC spheroid cell biology has provided valuable insights into the signaling plasticity associated with metastasis. We speculate that EOC cells modify their biology between tumour and spheroid states during cancer dormancy, although the specific mechanisms underlying this transition remain unknown.

View Article and Find Full Text PDF

Purpose: This study aims to evaluate the effectiveness and safety of prophylactic hyperthermic intraperitoneal chemotherapy (P-HIPEC) in patients with locally advanced gastric cancer (AGC) after laparoscopic radical gastrectomy. Additionally, it explores how the frequency and timing of P-HIPEC influence treatment outcomes.

Methods: A retrospective analysis was conducted on 227 patients with locally AGC who underwent laparoscopic surgery at Maoming People's Hospital from January 2016 to December 2022.

View Article and Find Full Text PDF

Background: The preferred treatment option for patients with limited peritoneal metastasis (PM) is cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (CRS+HIPEC).While the textbook outcome (TO) concept has been applied to other complex surgeries, its prevalence, determinants, and impact in patients with PM remain unclear. This study sought to identify factors influencing TO among individuals with PM undergoing CRS+HIPEC in an Eastern European population.

View Article and Find Full Text PDF

The accumulation of myeloid-derived suppressor cells participates in abdominal infection-induced tumor progression through the PD-L1/PD-1 axis.

Mol Oncol

January 2025

Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China.

Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide, with gastrectomy being the primary treatment option. Sepsis, a systemic inflammatory response to infection, may influence tumor growth by creating an immunosuppressive environment conducive to cancer cell proliferation and metastasis. Here, the effect of abdominal infection on tumor growth and metastasis was investigated through the implementation of a peritoneal metastasis model and a subcutaneous tumor model.

View Article and Find Full Text PDF

Background: Peritoneal metastasis (PM) after the rupture of hepatocellular carcinoma (HCC) is a critical issue that negatively affects patient prognosis. Machine learning models have shown great potential in predicting clinical outcomes; however, the optimal model for this specific problem remains unclear.

Methods: Clinical data were collected and analyzed from 522 patients with ruptured HCC who underwent surgery at 7 different medical centers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!