The soft ionization mechanism of helium-based plasma seems to be understood while it still remains challenging in argon-based plasma, although many studies have used argon plasmas as a soft ionization source with good ionization efficiencies. In this study, helium, argon, krypton, and xenon were fed into the same discharge geometry, a flexible micro-tube plasma (FµTP), to determine the ionization mechanisms. The FµTPs operated with the named noble gases obtained comparable ionization efficiencies by MS measurements. The optical emission results showed that N were the dominant ions within the helium-FµTP and noble gas ions were dominant for the other plasmas. These ions support the development of excitation and eventually stop at the end of the capillary. Therefore, Penning ionization and charge transfer between plasma and ambient air/analytes in the open atmosphere have been proven not to be the primary soft ionization mechanism. Furthermore, it was found that photoionization played a minor role in soft ionization. Using helium as a diagnosis gas in front of the discharge capillary nozzle of the FµTP, where the sample is usually positioned, shows that helium can be ignited by all of these FµTPs. This demonstrates that the excitation of a diagnosis gas as well as the ionization of analytes is independent of the type of the discharge gas. An alternative mechanism that a transient potential created by the ions is responsible for the soft ionization is subsequently proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480168PMC
http://dx.doi.org/10.1007/s00216-024-05419-1DOI Listing

Publication Analysis

Top Keywords

soft ionization
24
ionization
10
ionization mechanisms
8
ionization mechanism
8
ionization efficiencies
8
diagnosis gas
8
soft
6
mechanisms flexible
4
flexible µ-tube
4
µ-tube plasma-elucidation
4

Similar Publications

Article Synopsis
  • Electron microscopy is a powerful technique in nanotechnology, but it often causes random damage to samples being studied.
  • The introduction of a specific chemical probe can effectively manage this damage, allowing for clearer characterization of the interactions between electron beams and soft organic materials.
  • In experiments with Dewar benzene crystals subjected to a high-energy electron beam, researchers observed a significant increase in chemical reactions, amplifying the events by up to 90,000 times per incident electron.
View Article and Find Full Text PDF

[Progress in applications of ambient ionization mass spectrometry for lipids identification].

Se Pu

January 2025

Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Lipids are indispensable components of living organisms and play pivotal roles in cell-membrane fluidity, energy provision, and neurotransmitter transmission and transport. Lipids can act as potential biomarkers of diseases given their abilities to indicate cell-growth status. For example, the lipid-metabolism processes of cancer cells are distinct from those of normal cells owing to their rapid proliferation and adaptation to ever-changing biological environments.

View Article and Find Full Text PDF

Impact of Potassium Doping on a Two-Dimensional Kagome Organic Framework on Ag(111).

J Phys Chem Lett

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.

Alkali element doping has significant physical implications for two-dimensional materials, primarily by tuning the electronic structure and carrier concentration. It can enhance interface electronic interactions, providing opportunities for effective charge transfer at metal-organic interfaces. In this work, we investigated the effects of gradually increasing the level of K doping on the lattice structure and electronic properties of an organometallic coordinated Kagome lattice on a Ag(111) surface.

View Article and Find Full Text PDF

Improving the reliability of phthalate esters analysis in water samples by gas chromatography-tube plasma ionization-high-resolution mass spectrometry (GC-TPI-HRMS).

Talanta

December 2024

Applied Analytical Chemistry, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany; Teaching and Research Center for Separation, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany. Electronic address:

The monitoring of phthalate esters (PAEs) is challenging due to background contamination as well as the low selectivity observed when analyzing them by gas chromatography coupled to mass spectrometry (GC-MS) using electron ionization (EI). In this sense, alternative and soft ionization techniques could help to enhance the performance of the analytical determinations of PAEs in food samples. In this work, the use of a novel and soft ionization technique tube plasma ionization (TPI) has been explored to enhance the selectivity and sensitivity in the determination of PAEs in drinking water samples with GC-MS.

View Article and Find Full Text PDF

Introduction: Mycobacterium marinum is a well-known pathogenic non-tuberculous mycobacterium for skin and soft tissue infections. Infection, often presenting as superficial lesions, is seen after exposure of skin abrasions to contaminated water or infected fish and is known as "swimming pool" or "fish tank" granuloma. This study reported a case of M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!