AI Article Synopsis

  • Optical resonators are essential components in photonic systems, facilitating the development of meta-surfaces, sensors, and transmission filters.
  • Sub-wavelength resonators like planar split-ring resonators are significant for their capabilities in light manipulation and sensing, as well as for studying light-matter interactions.
  • The study employs near-field microscopy to investigate circular split-ring resonators with single layer graphene, leading to detailed mapping of electric field distributions which is crucial for applications like high harmonic generation.

Article Abstract

Optical resonators are fundamental building blocks of photonic systems, enabling meta-surfaces, sensors, and transmission filters to be developed for a range of applications. Sub-wavelength size (< λ/10) resonators, including planar split-ring resonators, are at the forefront of research owing to their potential for light manipulation, sensing applications and for exploring fundamental light-matter coupling phenomena. Near-field microscopy has emerged as a valuable tool for mode imaging in sub-wavelength size terahertz (THz) frequency resonators, essential for emerging THz devices (e.g. negative index materials, magnetic mirrors, filters) and enhanced light-matter interaction phenomena. Here, we probe coherently the localized field supported by circular split ring resonators with single layer graphene (SLG) embedded in the resonator gap, by means of scattering-type scanning near-field optical microscopy (s-SNOM), using either a single-mode or a frequency comb THz quantum cascade laser (QCL), in a detectorless configuration, via self-mixing interferometry. We demonstrate deep sub-wavelength mapping of the field distribution associated with in-plane resonator modes resolving both amplitude and phase of the supported modes, and unveiling resonant electric field enhancement in SLG, key for high harmonic generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247082PMC
http://dx.doi.org/10.1038/s41598-024-62787-5DOI Listing

Publication Analysis

Top Keywords

terahertz near-field
4
near-field microscopy
4
microscopy metallic
4
metallic circular
4
circular split
4
split ring
4
ring resonators
4
resonators graphene
4
graphene gap
4
gap optical
4

Similar Publications

Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed.

View Article and Find Full Text PDF

Terahertz scanning near-field optical microscopy for biomedical detection: Recent advances, challenges, and future perspectives.

Biotechnol Adv

December 2024

Center of Super-Resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China. Electronic address:

Terahertz (THz) radiation is widely recognized as a non-destructive, label-free, and highly- sensitive tool for biomedical detections. Nevertheless, its application in precision biomedical fields faces challenges due to poor spatial resolution caused by intrinsically long wavelength characteristics. THz scanning near-field optical microscopy (THz-SNOM), which surpasses the Rayleigh criterion, offers micrometer and nanometer-scale spatial resolution, making it possible to perform precise bioinspection with THz imaging.

View Article and Find Full Text PDF

Angle-Controlled Nanospectrum Switching from Lorentzian to Fano Lineshapes.

Nanomaterials (Basel)

November 2024

Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.

The tunability of spectral lineshapes, ranging from Lorentzian to Fano profiles, is essential for advancing nanoscale photonic technologies. Conventional far-field techniques are insufficient for studying nanoscale phenomena, particularly within the terahertz (THz) range. In this work, we use a U-shaped resonant ring on a waveguide substrate to achieve precise modulation of Lorentzian, Fano, and antiresonance profiles.

View Article and Find Full Text PDF

Spintronic terahertz metasurface emission characterized by scanning near-field nanoscopy.

Nanophotonics

April 2024

School of Electronic and Information Engineering, and School of Cyber Science and Technology, Beihang University, Beijing, China.

Understanding the ultrafast excitation, detection, transportation, and manipulation of nanoscale spin dynamics in the terahertz (THz) frequency range is critical to developing spintronic THz optoelectronic nanodevices. However, the diffraction limitation of the sub-millimeter waves - THz wavelengths - has impaired experimental investigation of spintronic THz nano-emission. Here, we present an approach to studying laser THz emission nanoscopy from W|CoFeB|Pt metasurfaces with ∼60-nm lateral spatial resolution.

View Article and Find Full Text PDF

Multi-resonant metasurfaces are of great significance in the applications of multi-band nanophotonics. Here, we propose a novel metasurface design scheme for simultaneously supporting quasi-bound states in continuum (QBIC) and other resonant modes, in which QBIC resonance is generated by mirror or rotational symmetry breaking in oligomers while other resonant modes can be simultaneously excited by rationally designing the shapes of meta-atoms within oligomers. As an example, the simultaneous excitation of QBIC and anapole modes are demonstrated in a dimer metasurface composed of asymmetric dumbbell-shaped apertures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!