Introduction: Hofbauer cells (HBCs) are macrophages of fetal origin that reside in the villous tissue. They are the only immune cells within healthy villi. While HBCs perform innate immune functions such as phagocytosis and antigen presentation, they are increasingly recognized for their diverse roles in placental physiology e.g. vascular functionality, tissue homeostasis, tolerance. Consequently, HBCs are of utmost interest in a variety of non-physiological placental conditions.
Isolation: Villous tissue is collected freshly after delivery and finely minced. The resulting tissue is digested in a two-step process, using Trypsin/DNase to separate cytotrophoblasts and collagenase/DNase to penetrate deeper into the villous stroma, containing HBCs, and obtain a single cell suspension. After a density gradient centrifugation, the corresponding cell layer is collected and subjected to negative immune selection of HBCs, yielding unaffected cells that have not been activated during the isolation process.
Quality Control: In addition to a classical immunocytochemistry (ICC) approach including macrophage markers, and markers for potentially contaminating cell types (e.g. fibroblasts, muscle, mesenchymal cells), we have developed a multi-color flow cytometry (FC) panel. This panel assesses Hofbauer cell purity and polarization states more accurately and comprehensively than qualitative ICC, using percentage analysis of parent cells to estimate the expression levels of specific markers.
Discussion: The presented protocol allows us to isolate HBCs in significant numbers and high purity, even from placentae compromised by preeclampsia (PE) with limited placental volume. We have successfully developed and implemented this protocol to study healthy, diabetic and PE macrophages, aiding a better understanding of the underlying placental pathophysiology at the cellular level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.placenta.2024.07.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!