Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: To investigate the tet(X) gene, a determinant of tigecycline resistance, in the emerging pathogen Elizabethkingia meningoseptica and its association with an integrative and conjugative element (ICE).
Methods: All E. meningoseptica genomes from the National Center for Biotechnology Information (n = 87) were retrieved and annotated for resistome searches using the CARD database. A phylogenic analysis was performed based on the E. meningoseptica core genome. The ICE was identified through comparative genomics with other ICEs occurring in Elizabethkingia spp.
Results: Phylogenetic analysis revealed E. meningoseptica genomes from six countries distributed across different lineages, some of which persisted for years. The common resistome of these genomes included bla, bla, bla, ranA/B, aadS, and catB (genes associated with resistance to β-lactams, aminoglycosides, and chloramphenicol). Some genomes also presented additional resistance genes (dfrA, ereD, bla, aadS, and tet(X)). Interestingly, tet(X) and aadS were located in an ICE of 49 769 bp (ICEEmSQ101), which was fully obtained from the E. meningoseptica SQ101 genome. We also showed evidence that the other 27 genomes harboured this ICE. The distribution of ICEEmSQ101, carrying tet(X), was restricted to a single Chinese lineage.
Conclusions: The tet(X) gene is not prevalent in the species E. meningoseptica, as previously stated for the genus Elizabethkingia, since it is present only in a single Chinese lineage. We identified that several E. meningoseptica genomes harboured an ICE that mobilized the Elizabethkingia tet(X) gene and exhibited characteristics similar to the ICEs of other Flavobacteria, which would favour their transmission in this bacterial family.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jgar.2024.07.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!