Intrinsic challenges and strategic approaches for enhancing the potential of natural rubber and its derivatives: A review.

Int J Biol Macromol

Department of Chemical Science, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia; Department of Physics, Faculty of Science and Technology, Airlangga University (Campus C), Mulyorejo Road, Surabaya 60115, Indonesia. Electronic address:

Published: September 2024

Natural rubber (NR) and its derivatives play indispensable roles in various industries due to their unique properties and versatile applications. However, the widespread utilization of NR faces intrinsic challenges such as limited mechanical strength, poor resistance to heat and organic solvent, poor electrical conductivity, and low compatibility with other materials, prompting researchers to explore enhancing its performance. Modified NRs (MNRs) like cyclization, deproteinization, chlorination, epoxidation, or grafting NR demonstrated a few enhanced merits compared to NR. However, various strategies, such as blending, vulcanization, crosslinking, grafting, plasticization, reinforcement, and nanostructuring, overcame most drawbacks. This review comprehensively examines these challenges and delves into the modification strategies employed to enhance the properties and expand the applications of NR and its derivatives. Furthermore, the review explores future visions for the NR industry, emphasizing integrating advanced modification techniques, adopting sustainable practices, and promoting circular economy principles. By elucidating the inherent challenges, outlining effective modification strategies, and envisioning future trajectories, this review provides valuable insights for stakeholders seeking to navigate and contribute to the sustainable development of the NR sector.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.133796DOI Listing

Publication Analysis

Top Keywords

intrinsic challenges
8
natural rubber
8
rubber derivatives
8
derivatives review
8
modification strategies
8
challenges strategic
4
strategic approaches
4
approaches enhancing
4
enhancing potential
4
potential natural
4

Similar Publications

Objectives: People with life-limiting diseases, who are no longer receiving active or curable treatment, often state their preferred place of care and death as the home. This requires coordinating a multidisciplinary approach, using available health and social care services to synchronize care. Family caregivers are key to enabling home-based end-of-life support; however, the 2 elements that facilitate success - coordination and family caregiver - are not necessarily associated as being intertwined or one and the same.

View Article and Find Full Text PDF

Machine learning for antimicrobial peptide identification and design.

Nat Rev Bioeng

May 2024

Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Artificial intelligence (AI) and machine learning (ML) models are being deployed in many domains of society and have recently reached the field of drug discovery. Given the increasing prevalence of antimicrobial resistance, as well as the challenges intrinsic to antibiotic development, there is an urgent need to accelerate the design of new antimicrobial therapies. Antimicrobial peptides (AMPs) are therapeutic agents for treating bacterial infections, but their translation into the clinic has been slow owing to toxicity, poor stability, limited cellular penetration and high cost, among other issues.

View Article and Find Full Text PDF

Allostery.

Q Rev Biophys

January 2025

Department of Chemistry, University of Oslo, Oslo, Norway.

describes the ability of biological macromolecules to transmit signals spatially through the molecule from an site – a site that is distinct from binding sites of primary, endogenous ligands – to the functional or active site. This review starts with a historical overview and a description of the classical example of allostery – hemoglobin – and other well-known examples (aspartate transcarbamoylase, Lac repressor, kinases, G-protein-coupled receptors, adenosine triphosphate synthase, and chaperonin). We then discuss fringe examples of allostery, including intrinsically disordered proteins and inter-enzyme allostery, and the influence of dynamics, entropy, and conformational ensembles and landscapes on allosteric mechanisms, to capture the essence of the field.

View Article and Find Full Text PDF

The tumor microenvironment functions as a dynamic and intricate ecosystem, comprising a diverse array of cellular and non-cellular components that precisely orchestrate pivotal tumor behaviors, including invasion, metastasis, and drug resistance. While unraveling the intricate interplay between the tumor microenvironment and tumor behaviors represents a tremendous challenge, recent research illuminates a crucial biological phenomenon known as cellular mechanotransduction. Within the microenvironment, mechanical cues like tensile stress, shear stress, and stiffness play a pivotal role by activating mechanosensitive effectors such as PIEZO proteins, integrins, and Yes-associated protein.

View Article and Find Full Text PDF

Nanomechanical responses (force-time profiles) of crystal lattices under deformation exhibit random critical jumps, reflecting the underlying structural transition processes. Despite extensive data collection, interpreting dynamic critical responses and their underlying mechanisms remains a significant challenge. This study explores a microscopic theoretical approach to analyse critical force fluctuations in martensitic transitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!