Unraveling the molecular landscape of osteoarthritis: A comprehensive review focused on the role of non-coding RNAs.

Pathol Res Pract

Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. Electronic address:

Published: August 2024

Osteoarthritis (OA) poses a significant global health challenge, with its prevalence anticipated to increase in the coming years. This review delves into the emerging molecular biomarkers in OA pathology, focusing on the roles of various molecules such as metabolites, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Advances in omics technologies have transformed biomarker identification, enabling comprehensive analyses of the complex pathways involved in OA pathogenesis. Notably, ncRNAs, especially miRNAs and lncRNAs, exhibit dysregulated expression patterns in OA, presenting promising opportunities for diagnosis and therapy. Additionally, the intricate interplay between epigenetic modifications and OA progression highlights the regulatory role of epigenetics in gene expression dynamics. Genome-wide association studies have pinpointed key genes undergoing epigenetic changes, providing insights into the inflammatory processes and chondrocyte hypertrophy typical of OA. Understanding the molecular landscape of OA, including biomarkers and epigenetic mechanisms, holds significant potential for developing innovative diagnostic tools and therapeutic strategies for OA management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prp.2024.155446DOI Listing

Publication Analysis

Top Keywords

molecular landscape
8
non-coding rnas
8
unraveling molecular
4
landscape osteoarthritis
4
osteoarthritis comprehensive
4
comprehensive review
4
review focused
4
focused role
4
role non-coding
4
rnas
4

Similar Publications

mRNA vaccines in the context of cancer treatment: from concept to application.

J Transl Med

January 2025

Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.

Immuno-oncology has witnessed remarkable advancements in the past decade, revolutionizing the landscape of cancer therapeutics in an encouraging manner. Among the diverse immunotherapy strategies, mRNA vaccines have ushered in a new era for the therapeutic management of malignant diseases, primarily due to their impressive impact on the COVID-19 pandemic. In this comprehensive review, we offer a systematic overview of mRNA vaccines, focusing on the optimization of structural design, the crucial role of delivery materials, and the administration route.

View Article and Find Full Text PDF

The effects of runs-of-homozygosity on pig domestication and breeding.

BMC Genomics

January 2025

Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.

Background: Since their domestication, recent inbreeding together with intensive artificial selection and population bottlenecks have allowed the prevalence of deleterious mutations and the increase of runs-of-homozygosity (ROH) in domestic pigs. This makes pigs a good model to understand the genetic underpinnings of inbreeding depression.

Results: Here we integrated a comprehensive dataset comprising 7239 domesticated pigs and wild boars genotyped by single nucleotide polymorphism (SNP) chips, along with phenotypic data encompassing growth, reproduction and disease-associated traits.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) plasticity and ER-phagy are intertwined processes essential for maintaining ER dynamics. We investigated the interplay between two isoforms of the ER-phagy receptor FAM134B in regulating ER remodeling in differentiating myoblasts. During myogenesis, the canonical FAM134B1 is degraded, while its isoform FAM134B2 is transcriptionally upregulated.

View Article and Find Full Text PDF

Excessive accumulation of auxin inhibits protocorm development during germination of Paphiopedilum spicerianum.

Plant Cell Rep

January 2025

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.

Excessive auxin accumulation inhibits protocorm development during germination of Paphiopedilum spicerianum, delaying shoot meristem formation by downregulating boundary genes (CUC1, CUC2, CLV3) and promoting fungal colonization, essential for seedling establishment. Paphiopedilum, possess high horticultural and conservational value. Asymbiotic germination is a common propagation method, but high rates of protocorm developmental arrest hinder seedling establishment.

View Article and Find Full Text PDF

Inherited retinal diseases (IRDs) may have significant diagnostic challenges due to their genetic complexity and diverse inheritance patterns. Advanced genotyping tools like exome sequencing (ES) offer promising opportunities for identifying causative variants and improving disease management. This retrospective study was aimed to present prevalent pathogenic and novel variants in patients diagnosed with IRDs using ES.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!