A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A new model of electrosurgical tissue damage for neurosurgery simulation. | LitMetric

A new model of electrosurgical tissue damage for neurosurgery simulation.

Comput Methods Programs Biomed

School of Information Engineering, Nanchang University, Jiangxi, Nanchang 330031, China; Department of System and Computer Engineering, Carleton University, Ottawa, K1S 5B6, Canada. Electronic address:

Published: September 2024

Background: Bipolar hemostasis electrocoagulation is a fundamental procedure in neurosurgery. A precise electrocoagulation model is essential to enable realistic visual feedback in virtual neurosurgical simulation. However, existing models lack an accurate description of the heat damage and irreversible tissue deformation caused by electrocoagulation, thus diminishing the visual realism. This work focuses on the electrocoagulation model for neurosurgery simulation.

Method: In this paper, a position-based dynamics (PBD) model with a bioheat transfer and damage prediction (BHTDP) method is developed for simulating the deformation of brain tissue caused by electrocoagulation. The presented BTHDP method uses the Arrhenius equation to predict thermal damage of brain tissue. A deformation model with energy and thermal damage constraints is developed to characterize soft tissue deformation during heat absorption before and after thermal injury. Visual effect of damaged brain tissue is re-rendered.

Result: To evaluate the accuracy of the proposed method, numerical simulations were conducted and compared with commercial finite element software. The maximum normalized error of the proposed model for predicting midpoint temperature is 10.3 % and the maximum error for predicting the thermal damage is 5.4 %. The contraction effects of heat-exposed anisotropic tissues are also simulated. The results indicate that the presented electrocoagulation model provides stable and realistic visual effects, making it applicable for simulating the electrocoagulation process in virtual neurosurgery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2024.108320DOI Listing

Publication Analysis

Top Keywords

electrocoagulation model
12
tissue deformation
12
brain tissue
12
thermal damage
12
realistic visual
8
caused electrocoagulation
8
model
7
electrocoagulation
7
tissue
6
damage
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!