A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Generation of a homozygous (MCRIi031-A-3) WT1 knockout human iPSC line. | LitMetric

Generation of a homozygous (MCRIi031-A-3) WT1 knockout human iPSC line.

Stem Cell Res

Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia. Electronic address:

Published: September 2024

The transcription factor WT1 plays a critical role in several embryonic developmental processes such as gonadogenesis, nephrogenesis, and cardiac development. We generated a homozygous (MCRIi031-A-3) WT1 knockout induced pluripotent stem cell (iPSC) line from human fibroblasts using a one-step protocol for CRISPR/Cas9 gene-editing and episomal-based reprogramming. The cells exhibit a normal karyotype and morphology, express pluripotency markers, and have the capacity to differentiate into the three embryonic germ layers. These cell lines will allow us to further explore the role of WT1 in critical developmental processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2024.103494DOI Listing

Publication Analysis

Top Keywords

homozygous mcrii031-a-3
8
mcrii031-a-3 wt1
8
wt1 knockout
8
developmental processes
8
generation homozygous
4
wt1
4
knockout human
4
human ipsc
4
ipsc transcription
4
transcription factor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!