The main proteases M are a group of highly conserved cysteine hydrolases in β-coronaviruses. They have been demonstrated to play an unavoidable role in viral replication, and consequently they have been suggested as key targets for treating coronavirus-caused infectious diseases, mainly from the COVID-19 epidemic. Since the most functional form for M enzymatic activity is associated to its homodimer, compounds inhibiting dimerization should also inhibit catalytic activity. We show how PIR-SEIRA (Plasmonic Internal Reflection-Surface Enhanced InfraRed Absorption) spectroscopy can be a noteworthy technique to study proteins subtle structural variations associated to inhibitor binding. Nanoantennas arrays can selectively confine and enhance electromagnetic field via localized plasmonic resonances, thus promoting ultrasensitive detection of biomolecules in close proximity of nanoantenna arrays and enabling the effective investigation of protein monolayers. By adopting this approach, reflection measurements conducted under back illumination of nanoantennas allow to probe anchored protein monolayers, with minimum contribution of environmental buffer molecules. PIR-SEIRA spectroscopy on M was carried out by ad hoc designed devices, resonating in the spectral region of Amide I and Amide II bands. We evaluated here the structure of anchored monomers and dimers in different buffered environment and in presence of a newly designed M inhibitor. Experimental results show that dimerization is not associated to relevant backbone rearrangements of the protein at secondary structure level, and even if the compound inhibits the dimerization, it is not effective at breaking preformed dimers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.124772DOI Listing

Publication Analysis

Top Keywords

protein monolayers
8
dimeric monomeric
4
monomeric conformation
4
conformation sars-cov-2
4
sars-cov-2 main
4
main protease
4
protease technical
4
technical approaches
4
approaches based
4
based radiation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!