The complicated loading process and easy falling off of powder catalysts still restrict the wide application of Photo-Fenton technology in practical water treatment. In this study, a magnetic fixed film plate column water treatment equipment is designed as a visible Photo-Fenton reactor to remove levofloxacin (LEV). The effect of magnetic force can ensure that the catalyst is firmly fixed, and the multi-level shallow column plate structure achieves full contact and efficient reaction between the catalyst and wastewater. Simultaneously, the Cu/CuFeO (STCCF) utilizes Cu to construct an S-scheme electron transfer channel, which improves the separation efficiency of photo-generated carriers and provides sufficient photo-generated electrons for the reduction of Fe (Ⅲ) and Cu (Ⅱ). The pseudo-first-order reaction kinetic constant k for the degradation of LEV in the visible Photo-Fenton system is 0.0349 min, which is 15.9 times that of the photocatalytic system and 4.8 times that of the Fenton system. After continuous operation for 72 h, the magnetic fixed film plate column reactor can still remove more than 90 % of LEV and 82 % of COD in the secondary effluent of simulated antibiotic pharmaceutical wastewater treatment process, and the effluent is stable and meets the standard. The magnetic fixed film plate column reactor can be used for advanced treatment of antibiotic pharmaceutical wastewater. This study provides a new insight into the application of the Photo-Fenton process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.135173 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!