Mutation-induced LZTR1 polymerization provokes cardiac pathology in recessive Noonan syndrome.

Cell Rep

Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Translational Neuroinflammation and Automated Microscopy, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany. Electronic address:

Published: July 2024

Noonan syndrome patients harboring causative variants in LZTR1 are particularly at risk to develop severe and early-onset hypertrophic cardiomyopathy. In this study, we investigate the mechanistic consequences of a homozygous variant LZTR1 by using patient-specific and CRISPR-Cas9-corrected induced pluripotent stem cell (iPSC) cardiomyocytes. Molecular, cellular, and functional phenotyping in combination with in silico prediction identify an LZTR1-specific disease mechanism provoking cardiac hypertrophy. The variant is predicted to alter the binding affinity of the dimerization domains facilitating the formation of linear LZTR1 polymers. LZTR1 complex dysfunction results in the accumulation of RAS GTPases, thereby provoking global pathological changes of the proteomic landscape ultimately leading to cellular hypertrophy. Furthermore, our data show that cardiomyocyte-specific MRAS degradation is mediated by LZTR1 via non-proteasomal pathways, whereas RIT1 degradation is mediated by both LZTR1-dependent and LZTR1-independent pathways. Uni- or biallelic genetic correction of the LZTR1 missense variant rescues the molecular and cellular disease phenotype, providing proof of concept for CRISPR-based therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2024.114448DOI Listing

Publication Analysis

Top Keywords

noonan syndrome
8
molecular cellular
8
degradation mediated
8
lztr1
6
mutation-induced lztr1
4
lztr1 polymerization
4
polymerization provokes
4
provokes cardiac
4
cardiac pathology
4
pathology recessive
4

Similar Publications

Rasopathies, including Noonan Syndrome (NS) and Neurofibromatosis type 1 (NF1), are developmental disorders caused by germline mutations in genes of the RAS/mitogen-activated protein kinase pathway (RAS-MAPK). This study investigates irritability, a highly prevalent transdiagnostic construct, in children with Rasopathies and the impact of Rasopathy status on the associations between irritability, emotional dysregulation-related disorders, and social skills impairments. The sample comprise 174 children aged 4-17 (age mean = 9.

View Article and Find Full Text PDF

We describe a case of novel use of trametinib in treating arrythmia without concomitant cardiomyopathy. Our patient is a two-year-old female born with Costello syndrome due to heterozygous mutations in the HRAS gene c34 G > T p (G12C). Shortly after birth, she was diagnosed with multifocal atrial tachyarrhythmia.

View Article and Find Full Text PDF

The pathogenic G361A variant of CRAF, associated with increased intrinsic kinase activity in Noonan syndrome (NS), remains poorly understood in terms of its molecular and structural impact on kinase activity. To elucidate the mechanistic implications of the glycine to alanine substitution at residue 361 in CRAF, we employed molecular dynamics simulations. Our findings reveal that this mutation predominantly affects the ATP binding pocket and critical intermolecular interactions within the active cleft that favors the phosphate transfer reaction.

View Article and Find Full Text PDF

Background: Noonan syndrome (NS) is a rare group of autosomal genetic disorders. In recent years, with the exploration and development of molecular diagnostic techniques, more and more researchers have begun to pay attention to NS. However, there is still a lack of reports on the bibliometric analysis of NS worldwide.

View Article and Find Full Text PDF

Unlabelled: The RASopathies are a group of disorders resulting from a germline variant in the genes encoding the Ras/mitogen-activated protein kinase pathway. These disorders include Noonan syndrome (NS), cardiofaciocutaneous syndrome (CFC), Costello syndrome (CS), Legius syndrome (LS), and neurofibromatosis type 1 (NF1), and have overlapping clinical features due to RAS/MAPK dysfunction. In this study, we aimed to describe the clinical and molecular features of patients exhibiting phenotypic manifestations consistent with RASopathies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!