A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cytochrome P450 CYP81A104 in Eleusine indica confers resistance to multiherbicide with different modes of action. | LitMetric

AI Article Synopsis

  • Developing herbicide-resistant (HR) crops helps control weeds, but prolonged herbicide use has led to the emergence of resistant weeds, prompting the study of a resistant E. indica population from fields with HR rice cultivars.
  • The resistant population exhibited a 4.5-fold increase in resistance to the herbicide imazamox, with alterations in the CYP81A104 gene playing a significant role in this resistance, as confirmed by RNA sequencing and P450 inhibitor tests.
  • The study highlights the genetic basis of multiherbicide resistance and offers insights for improving weed management strategies in HR crops.

Article Abstract

Background: Developing herbicide-resistant (HR) crop cultivars is an efficient way to control weeds and minimize crop yield losses. However, widespread and long-term herbicide application has led to the evolution of resistant weeds. Here, we established a resistant (R) E. indica population, collected from imidazolinone-resistant rice cultivar fields.

Results: The R population evolved 4.5-fold resistance to imazamox. Acetolactate synthase (ALS) gene sequencing and ALS activity assays excluded the effect of target-site resistance in this population. P450 inhibitor malathion pretreatment significantly reversed resistance to imazamox. RNA sequencing showed that a P450 gene CYP81A104 was expressed higher in R versus susceptible (S) plants. Arabidopsis overexpressing CYP81A104 showed resistance to ALS inhibitors (imazamox, tribenuron-methyl, penoxsulam and flucarbazone-sodium), PSII inhibitor (bentazone), hydroxyphenyl pyruvate dioxygenase inhibitor (mesotrione) and auxin mimics (MCPA), which was generally consistent with the results presented in the R population.

Conclusion: This study confirmed that the CYP81A104 gene endowed resistance to multiherbicides with different modes-of-action. Our findings provide an insight into the molecular characteristics of resistance and contribute to formulating an appropriate strategy for weed management in HR crops. © 2024 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.8310DOI Listing

Publication Analysis

Top Keywords

resistance imazamox
8
resistance
7
cytochrome p450
4
cyp81a104
4
p450 cyp81a104
4
cyp81a104 eleusine
4
eleusine indica
4
indica confers
4
confers resistance
4
resistance multiherbicide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!