Fetal growth restriction (FGR) severely affects the health outcome of newborns and represents a major cause of perinatal morbidity. The precise involvement of circCULT1 in the progression of FGR remains unclear. We performed next-generation sequencing and RT-qPCR to identify differentially expressed circRNAs in placental tissues affected by FGR by comparing them with unaffected counterparts. Edu, flow cytometry, and transwell assay were conducted to detect HTR8/SVneo cell's function in regard to cell proliferation, migration, and invasion. The interaction between circCUL1 and hsa-miR-30e-3p was assessed through dual-luciferase reporter assays, validation of the interaction between circCUL1 and ANXA1 was performed using RNA pulldown and immunoprecipitation assays. Western blot analysis was performed to evaluate protein levels of autophagy markers and components of the PI3K/AKT signaling pathway. A knockout (KO) mouse model was established for homologous mmu-circ-0001469 to assess fetal mouse growth and development indicators. Our findings revealed an upregulation of circCUL1 expression in placental tissues from patients with FGR. We found that suppression of circCUL1 increased the trophoblast cell proliferation, migration, and invasion, circCUL1 could interact with hsa-miR-30e-3p. Further, circCUL1 stimulated autophagy, modulating trophoblast cell autophagy via the ANXA1/PI3K/AKT pathway, and a notable disparity was observed, with KO mice displaying accelerated embryo development and exhibiting heavier placentas in comparison to wild-type C57BL/6 mice. By modulating the ANXA1/PI3K/AKT signaling pathway through the interaction with hsa-miR-30e-3p, circCUL1 promotes autophagy while concurrently suppressing trophoblast cell proliferation, migration, and invasion. These findings offer novel insights into potential diagnostic markers and therapeutic targets for FGR research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbt.23759 | DOI Listing |
Sci Rep
January 2025
Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
Extramammary Paget disease (EMPD) is a rare skin cancer that typically occurs in the anogenital area of older people. Since efficacy of treatments for metastatic or unresectable EMPD remains poor, development of a novel therapeutic approach is strongly desired. However, the lack of EMPD models has hampered investigation of EMPD.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.
The placenta is the critical interface between mother and fetus, and consequently, placental dysfunction underlies many pregnancy complications. Placental formation requires an adequate expansion of trophoblast stem and progenitor cells followed by finely tuned lineage specification events. Here, using single-cell RNA sequencing of mouse trophoblast stem cells during the earliest phases of differentiation, we identify gatekeepers of the stem cell state, notably Nicol1, and uncover unsuspected trajectories of cell lineage diversification as well as regulators of lineage entry points.
View Article and Find Full Text PDFAdv Anat Embryol Cell Biol
January 2025
Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA.
Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as pivotal mediators of intercellular communication. Embryo implantation is a critical process in early pregnancy and requires communication between the embryo and maternal uterus. EVs are important in coordinating the communication between the embryo and maternal uterus.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
December 2024
Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
Fetal growth restriction (FGR) is a common complication of pregnancy, which seriously endangers fetal health and still lacks effective therapeutic targets. Clostridium difficile (C. difficile) is associated with fetal birth weight, and its membrane vesicles (MVs) are pathogenic vectors.
View Article and Find Full Text PDFAm J Reprod Immunol
January 2025
Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
Preeclampsia is one of the most severe obstetric complications, yet its pathogenesis remains unclear. Decidual natural killer (dNK) cells, the most abundant immune cells at the maternal-fetal interface, are closely associated with preeclampsia due to abnormalities in their quantity, phenotype, and function. This review summarizes the molecular mechanisms by which dNK cells regulate extravillous trophoblast (EVT) invasion, promote uterine spiral artery remodeling, and maintain immune tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!